These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 18591419)
21. Novel alpha-KTx sites in the BK channel and comparative sequence analysis reveal distinguishing features of the BK and KV channel outer pore. Giangiacomo KM; Becker J; Garsky C; Schmalhofer W; Garcia ML; Mullmann TJ Cell Biochem Biophys; 2008; 52(1):47-58. PubMed ID: 18815746 [TBL] [Abstract][Full Text] [Related]
22. Inactivation of BK channels mediated by the NH(2) terminus of the beta3b auxiliary subunit involves a two-step mechanism: possible separation of binding and blockade. Lingle CJ; Zeng XH; Ding JP; Xia XM J Gen Physiol; 2001 Jun; 117(6):583-606. PubMed ID: 11382808 [TBL] [Abstract][Full Text] [Related]
23. Conopeptide Vt3.1 preferentially inhibits BK potassium channels containing β4 subunits via electrostatic interactions. Li M; Chang S; Yang L; Shi J; McFarland K; Yang X; Moller A; Wang C; Zou X; Chi C; Cui J J Biol Chem; 2014 Feb; 289(8):4735-42. PubMed ID: 24398688 [TBL] [Abstract][Full Text] [Related]
24. Intrinsic electrostatic potential in the BK channel pore: role in determining single channel conductance and block. Carvacho I; Gonzalez W; Torres YP; Brauchi S; Alvarez O; Gonzalez-Nilo FD; Latorre R J Gen Physiol; 2008 Feb; 131(2):147-61. PubMed ID: 18227273 [TBL] [Abstract][Full Text] [Related]
25. Functional effects of auxiliary beta4-subunit on rat large-conductance Ca(2+)-activated K(+) channel. Ha TS; Heo MS; Park CS Biophys J; 2004 May; 86(5):2871-82. PubMed ID: 15111404 [TBL] [Abstract][Full Text] [Related]
26. Consequences of the stoichiometry of Slo1 alpha and auxiliary beta subunits on functional properties of large-conductance Ca2+-activated K+ channels. Wang YW; Ding JP; Xia XM; Lingle CJ J Neurosci; 2002 Mar; 22(5):1550-61. PubMed ID: 11880485 [TBL] [Abstract][Full Text] [Related]
27. Alcohol modulation of BK channel gating depends on β subunit composition. Kuntamallappanavar G; Dopico AM J Gen Physiol; 2016 Nov; 148(5):419-440. PubMed ID: 27799321 [TBL] [Abstract][Full Text] [Related]
28. Channel beta2-4 subunits fail to substitute for beta1 in sensitizing BK channels to lithocholate. Bukiya AN; Vaithianathan T; Toro L; Dopico AM Biochem Biophys Res Commun; 2009 Dec; 390(3):995-1000. PubMed ID: 19852931 [TBL] [Abstract][Full Text] [Related]
29. Regulation of STREX exon large conductance, calcium-activated potassium channels by the beta4 accessory subunit. Petrik D; Brenner R Neuroscience; 2007 Nov; 149(4):789-803. PubMed ID: 17945424 [TBL] [Abstract][Full Text] [Related]
30. Interaction sites between the Slo1 pore and the NH2 terminus of the beta2 subunit, probed with a three-residue sensor. Li H; Yao J; Tong X; Guo Z; Wu Y; Sun L; Pan N; Wu H; Xu T; Ding J J Biol Chem; 2007 Jun; 282(24):17720-8. PubMed ID: 17430898 [TBL] [Abstract][Full Text] [Related]
31. Block of mouse Slo1 and Slo3 K+ channels by CTX, IbTX, TEA, 4-AP and quinidine. Tang QY; Zhang Z; Xia XM; Lingle CJ Channels (Austin); 2010; 4(1):22-41. PubMed ID: 19934650 [TBL] [Abstract][Full Text] [Related]
32. Differential effects of beta 1 and beta 2 subunits on BK channel activity. Orio P; Latorre R J Gen Physiol; 2005 Apr; 125(4):395-411. PubMed ID: 15767297 [TBL] [Abstract][Full Text] [Related]
33. The interface between membrane-spanning and cytosolic domains in Ca²+-dependent K+ channels is involved in β subunit modulation of gating. Sun X; Shi J; Delaloye K; Yang X; Yang H; Zhang G; Cui J J Neurosci; 2013 Jul; 33(27):11253-61. PubMed ID: 23825428 [TBL] [Abstract][Full Text] [Related]
34. Interactions between beta subunits of the KCNMB family and Slo3: beta4 selectively modulates Slo3 expression and function. Yang CT; Zeng XH; Xia XM; Lingle CJ PLoS One; 2009 Jul; 4(7):e6135. PubMed ID: 19578543 [TBL] [Abstract][Full Text] [Related]
35. A neuronal beta subunit (KCNMB4) makes the large conductance, voltage- and Ca2+-activated K+ channel resistant to charybdotoxin and iberiotoxin. Meera P; Wallner M; Toro L Proc Natl Acad Sci U S A; 2000 May; 97(10):5562-7. PubMed ID: 10792058 [TBL] [Abstract][Full Text] [Related]
36. Compartmentalized beta subunit distribution determines characteristics and ethanol sensitivity of somatic, dendritic, and terminal large-conductance calcium-activated potassium channels in the rat central nervous system. Wynne PM; Puig SI; Martin GE; Treistman SN J Pharmacol Exp Ther; 2009 Jun; 329(3):978-86. PubMed ID: 19321803 [TBL] [Abstract][Full Text] [Related]
37. Structural determinants for functional coupling between the beta and alpha subunits in the Ca2+-activated K+ (BK) channel. Orio P; Torres Y; Rojas P; Carvacho I; Garcia ML; Toro L; Valverde MA; Latorre R J Gen Physiol; 2006 Feb; 127(2):191-204. PubMed ID: 16446507 [TBL] [Abstract][Full Text] [Related]
38. Cloning and functional expression of two families of beta-subunits of the large conductance calcium-activated K+ channel. Uebele VN; Lagrutta A; Wade T; Figueroa DJ; Liu Y; McKenna E; Austin CP; Bennett PB; Swanson R J Biol Chem; 2000 Jul; 275(30):23211-8. PubMed ID: 10766764 [TBL] [Abstract][Full Text] [Related]
39. Lysine-rich extracellular rings formed by hbeta2 subunits confer the outward rectification of BK channels. Chen M; Gan G; Wu Y; Wang L; Wu Y; Ding J PLoS One; 2008 May; 3(5):e2114. PubMed ID: 18461166 [TBL] [Abstract][Full Text] [Related]
40. Steady-state and closed-state inactivation properties of inactivating BK channels. Ding JP; Lingle CJ Biophys J; 2002 May; 82(5):2448-65. PubMed ID: 11964233 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]