These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 18591483)

  • 1. Cholinergic mediation of attention: contributions of phasic and tonic increases in prefrontal cholinergic activity.
    Parikh V; Sarter M
    Ann N Y Acad Sci; 2008; 1129():225-35. PubMed ID: 18591483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection.
    Sarter M; Hasselmo ME; Bruno JP; Givens B
    Brain Res Brain Res Rev; 2005 Feb; 48(1):98-111. PubMed ID: 15708630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Second-by-second measurement of acetylcholine release in prefrontal cortex.
    Bruno JP; Gash C; Martin B; Zmarowski A; Pomerleau F; Burmeister J; Huettl P; Gerhardt GA
    Eur J Neurosci; 2006 Nov; 24(10):2749-57. PubMed ID: 17156201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prefrontal acetylcholine release controls cue detection on multiple timescales.
    Parikh V; Kozak R; Martinez V; Sarter M
    Neuron; 2007 Oct; 56(1):141-54. PubMed ID: 17920021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Augmented prefrontal acetylcholine release during challenged attentional performance.
    Kozak R; Bruno JP; Sarter M
    Cereb Cortex; 2006 Jan; 16(1):9-17. PubMed ID: 15788700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortical cholinergic signaling controls the detection of cues.
    Gritton HJ; Howe WM; Mallory CS; Hetrick VL; Berke JD; Sarter M
    Proc Natl Acad Sci U S A; 2016 Feb; 113(8):E1089-97. PubMed ID: 26787867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetylcholine Release in Prefrontal Cortex Promotes Gamma Oscillations and Theta-Gamma Coupling during Cue Detection.
    Howe WM; Gritton HJ; Lusk NA; Roberts EA; Hetrick VL; Berke JD; Sarter M
    J Neurosci; 2017 Mar; 37(12):3215-3230. PubMed ID: 28213446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prefrontal cholinergic mechanisms instigating shifts from monitoring for cues to cue-guided performance: converging electrochemical and fMRI evidence from rats and humans.
    Howe WM; Berry AS; Francois J; Gilmour G; Carp JM; Tricklebank M; Lustig C; Sarter M
    J Neurosci; 2013 May; 33(20):8742-52. PubMed ID: 23678117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microsphere embolism-induced cortical cholinergic deafferentation and impairments in attentional performance.
    Craft TK; Mahoney JH; Devries AC; Sarter M
    Eur J Neurosci; 2005 Jun; 21(11):3117-32. PubMed ID: 15978021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward a neuro-cognitive animal model of the cognitive symptoms of schizophrenia: disruption of cortical cholinergic neurotransmission following repeated amphetamine exposure in attentional task-performing, but not non-performing, rats.
    Kozak R; Martinez V; Young D; Brown H; Bruno JP; Sarter M
    Neuropsychopharmacology; 2007 Oct; 32(10):2074-86. PubMed ID: 17299502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inactivation of prefrontal cortex abolishes cortical acetylcholine release evoked by sensory or sensory pathway stimulation in the rat.
    Rasmusson DD; Smith SA; Semba K
    Neuroscience; 2007 Oct; 149(1):232-41. PubMed ID: 17850979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. What do phasic cholinergic signals do?
    Sarter M; Lustig C; Berry AS; Gritton H; Howe WM; Parikh V
    Neurobiol Learn Mem; 2016 Apr; 130():135-41. PubMed ID: 26911787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cholinergic control of attention to cues guiding established performance versus learning: theoretical comment on Maddux, Kerfoot, Chatterjee, and Holland (2007).
    Sarter M
    Behav Neurosci; 2007 Feb; 121(1):233-5. PubMed ID: 17324069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deficits in attentional control: cholinergic mechanisms and circuitry-based treatment approaches.
    Sarter M; Paolone G
    Behav Neurosci; 2011 Dec; 125(6):825-35. PubMed ID: 22122146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurotensin modulation of acetylcholine, GABA, and aspartate release from rat prefrontal cortex studied in vivo with microdialysis.
    Petkova-Kirova P; Rakovska A; Della Corte L; Zaekova G; Radomirov R; Mayer A
    Brain Res Bull; 2008 Sep; 77(2-3):129-35. PubMed ID: 18721670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Guanfacine potentiates the activation of prefrontal cortex evoked by warning signals.
    Clerkin SM; Schulz KP; Halperin JM; Newcorn JH; Ivanov I; Tang CY; Fan J
    Biol Psychiatry; 2009 Aug; 66(4):307-12. PubMed ID: 19520360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lateralized attentional functions of cortical cholinergic inputs.
    Martinez V; Sarter M
    Behav Neurosci; 2004 Oct; 118(5):984-91. PubMed ID: 15506881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortical cholinergic transmission and cortical information processing in schizophrenia.
    Sarter M; Nelson CL; Bruno JP
    Schizophr Bull; 2005 Jan; 31(1):117-38. PubMed ID: 15888431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal filtering by prefrontal neurons in duration discrimination.
    Oshio K; Chiba A; Inase M
    Eur J Neurosci; 2008 Dec; 28(11):2333-43. PubMed ID: 19019201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased acetylcholine release in the rat medial prefrontal cortex during performance of a visual attentional task.
    Passetti F; Dalley JW; O'Connell MT; Everitt BJ; Robbins TW
    Eur J Neurosci; 2000 Aug; 12(8):3051-8. PubMed ID: 10971646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.