BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 18591866)

  • 1. [Biochemical selenocysteine synthesis and the phylogenic study].
    Mizutani T; Osaka T; Fujiwara T; Shahidzzman M
    Yakugaku Zasshi; 2008 Jul; 128(7):989-96. PubMed ID: 18591866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of selenocysteine on its tRNA in eukaryotes.
    Xu XM; Carlson BA; Mix H; Zhang Y; Saira K; Glass RS; Berry MJ; Gladyshev VN; Hatfield DL
    PLoS Biol; 2007 Jan; 5(1):e4. PubMed ID: 17194211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New developments in selenium biochemistry: selenocysteine biosynthesis in eukaryotes and archaea.
    Xu XM; Carlson BA; Zhang Y; Mix H; Kryukov GV; Glass RS; Berry MJ; Gladyshev VN; Hatfield DL
    Biol Trace Elem Res; 2007 Dec; 119(3):234-41. PubMed ID: 17916946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The unique tRNA
    Serrão VHB; Silva IR; da Silva MTA; Scortecci JF; de Freitas Fernandes A; Thiemann OH
    Amino Acids; 2018 Sep; 50(9):1145-1167. PubMed ID: 29948343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeted insertion of cysteine by decoding UGA codons with mammalian selenocysteine machinery.
    Xu XM; Turanov AA; Carlson BA; Yoo MH; Everley RA; Nandakumar R; Sorokina I; Gygi SP; Gladyshev VN; Hatfield DL
    Proc Natl Acad Sci U S A; 2010 Dec; 107(50):21430-4. PubMed ID: 21115847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of selenocysteine, the 21st amino acid in the genetic code, and a novel pathway for cysteine biosynthesis.
    Turanov AA; Xu XM; Carlson BA; Yoo MH; Gladyshev VN; Hatfield DL
    Adv Nutr; 2011 Mar; 2(2):122-8. PubMed ID: 22332041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selenocysteine tRNA[Ser]Sec gene is ubiquitous within the animal kingdom.
    Lee BJ; Rajagopalan M; Kim YS; You KH; Jacobson KB; Hatfield D
    Mol Cell Biol; 1990 May; 10(5):1940-9. PubMed ID: 2139169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into substrate promiscuity of human seryl-tRNA synthetase.
    Holman KM; Puppala AK; Lee JW; Lee H; Simonović M
    RNA; 2017 Nov; 23(11):1685-1699. PubMed ID: 28808125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea.
    Yuan J; Palioura S; Salazar JC; Su D; O'Donoghue P; Hohn MJ; Cardoso AM; Whitman WB; Söll D
    Proc Natl Acad Sci U S A; 2006 Dec; 103(50):18923-7. PubMed ID: 17142313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The canonical pathway for selenocysteine insertion is dispensable in Trypanosomes.
    Aeby E; Palioura S; Pusnik M; Marazzi J; Lieberman A; Ullu E; Söll D; Schneider A
    Proc Natl Acad Sci U S A; 2009 Mar; 106(13):5088-92. PubMed ID: 19279205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A quantitative model for the rate-limiting process of UGA alternative assignments to stop and selenocysteine codons.
    Chen YF; Lin HC; Chuang KN; Lin CH; Yen HS; Yeang CH
    PLoS Comput Biol; 2017 Feb; 13(2):e1005367. PubMed ID: 28178267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translational redefinition of UGA codons is regulated by selenium availability.
    Howard MT; Carlson BA; Anderson CB; Hatfield DL
    J Biol Chem; 2013 Jul; 288(27):19401-13. PubMed ID: 23696641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for the major role of O-phosphoseryl-tRNA kinase in the UGA-specific encoding of selenocysteine.
    Chiba S; Itoh Y; Sekine S; Yokoyama S
    Mol Cell; 2010 Aug; 39(3):410-20. PubMed ID: 20705242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selenocysteine synthesis in mammalia: an identity switch from tRNA(Ser) to tRNA(Sec).
    Amberg R; Mizutani T; Wu XQ; Gross HJ
    J Mol Biol; 1996 Oct; 263(1):8-19. PubMed ID: 8890909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adjustments, extinction, and remains of selenocysteine incorporation machinery in the nematode lineage.
    Otero L; Romanelli-Cedrez L; Turanov AA; Gladyshev VN; Miranda-Vizuete A; Salinas G
    RNA; 2014 Jul; 20(7):1023-34. PubMed ID: 24817701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selenocysteine biosynthesis and insertion machinery in Naegleria gruberi.
    da Silva MT; Caldas VE; Costa FC; Silvestre DA; Thiemann OH
    Mol Biochem Parasitol; 2013 Apr; 188(2):87-90. PubMed ID: 23603359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and catalytic mechanism of eukaryotic selenocysteine synthase.
    Ganichkin OM; Xu XM; Carlson BA; Mix H; Hatfield DL; Gladyshev VN; Wahl MC
    J Biol Chem; 2008 Feb; 283(9):5849-65. PubMed ID: 18093968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dual identities of mammalian tRNA(Sec) for SerRS and selenocysteine synthase.
    Mizutani T; Kanaya K; Ikeda S; Fujiwara T; Yamada K; Totsuka T
    Mol Biol Rep; 1998 Nov; 25(4):211-6. PubMed ID: 9870610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A homozygous mutation in the human selenocysteine tRNA gene impairs UGA recoding activity and selenoproteome regulation by selenium.
    Vindry C; Guillin O; Wolff P; Marie P; Mortreux F; Mangeot PE; Ohlmann T; Chavatte L
    Nucleic Acids Res; 2023 Aug; 51(14):7580-7601. PubMed ID: 37254812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct genetic code expansion strategies for selenocysteine and pyrrolysine are reflected in different aminoacyl-tRNA formation systems.
    Yuan J; O'Donoghue P; Ambrogelly A; Gundllapalli S; Sherrer RL; Palioura S; Simonović M; Söll D
    FEBS Lett; 2010 Jan; 584(2):342-9. PubMed ID: 19903474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.