These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 18592190)

  • 41. Protocols for peptidomic analysis of spider venoms.
    Songping L
    Methods Mol Biol; 2010; 615():75-85. PubMed ID: 20013201
    [TBL] [Abstract][Full Text] [Related]  

  • 42. De novo peptide sequencing based on a divide-and-conquer algorithm and peptide tandem spectrum simulation.
    Zhang Z
    Anal Chem; 2004 Nov; 76(21):6374-83. PubMed ID: 15516130
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Improving peptide identification using an empirical peptide retention time database.
    Sun W; Zhang L; Yang R; Shao C; Zhang Z; Gao Y
    Rapid Commun Mass Spectrom; 2009 Jan; 23(1):109-18. PubMed ID: 19065623
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An accurate and efficient algorithm for Peptide and ptm identification by tandem mass spectrometry.
    Ning K; Ng HK; Leong HW
    Genome Inform; 2007; 19():119-30. PubMed ID: 18546510
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An iterative strategy for precursor ion selection for LC-MS/MS based shotgun proteomics.
    Zerck A; Nordhoff E; Resemann A; Mirgorodskaya E; Suckau D; Reinert K; Lehrach H; Gobom J
    J Proteome Res; 2009 Jul; 8(7):3239-51. PubMed ID: 19402737
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Using annotated peptide mass spectrum libraries for protein identification.
    Craig R; Cortens JC; Fenyo D; Beavis RC
    J Proteome Res; 2006 Aug; 5(8):1843-9. PubMed ID: 16889405
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Using cross-correlation normalized for peptide length to optimize peptide identification in shotgun proteomics.
    Yang B; Ying W; Gong Y; Zhang Y; Cai Y; Dong H; Qian X
    Rapid Commun Mass Spectrom; 2005; 19(20):2983-5. PubMed ID: 16178048
    [No Abstract]   [Full Text] [Related]  

  • 48. Bioinformatics methods for protein identification using Peptide mass fingerprinting.
    Song Z; Chen L; Xu D
    Methods Mol Biol; 2010; 604():7-22. PubMed ID: 20013361
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Detection and validation of non-synonymous coding SNPs from orthogonal analysis of shotgun proteomics data.
    Bunger MK; Cargile BJ; Sevinsky JR; Deyanova E; Yates NA; Hendrickson RC; Stephenson JL
    J Proteome Res; 2007 Jun; 6(6):2331-40. PubMed ID: 17488105
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The use of proteotypic peptide libraries for protein identification.
    Craig R; Cortens JP; Beavis RC
    Rapid Commun Mass Spectrom; 2005; 19(13):1844-50. PubMed ID: 15945033
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Terminal proteomics: N- and C-terminal analyses for high-fidelity identification of proteins using MS.
    Nakazawa T; Yamaguchi M; Okamura TA; Ando E; Nishimura O; Tsunasawa S
    Proteomics; 2008 Feb; 8(4):673-85. PubMed ID: 18214847
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Algorithm for identification of fusion proteins via mass spectrometry.
    Ng J; Pevzner PA
    J Proteome Res; 2008 Jan; 7(1):89-95. PubMed ID: 18173219
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Global quantitative proteomic profiling through 18O-labeling in combination with MS/MS spectra analysis.
    White CA; Oey N; Emili A
    J Proteome Res; 2009 Jul; 8(7):3653-65. PubMed ID: 19400582
    [TBL] [Abstract][Full Text] [Related]  

  • 54. VIPER: an advanced software package to support high-throughput LC-MS peptide identification.
    Monroe ME; Tolić N; Jaitly N; Shaw JL; Adkins JN; Smith RD
    Bioinformatics; 2007 Aug; 23(15):2021-3. PubMed ID: 17545182
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhancing TOF/TOF-based de novo sequencing capability for high throughput protein identification with amino acid-coded mass tagging.
    Shui W; Liu Y; Fan H; Bao H; Liang S; Yang P; Chen X
    J Proteome Res; 2005; 4(1):83-90. PubMed ID: 15707361
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Grid-based analysis of tandem mass spectrometry data in clinical proteomics.
    Quandt A; Hernandez P; Kunzst P; Pautasso C; Tuloup M; Hernandez C; Appel RD
    Stud Health Technol Inform; 2007; 126():13-22. PubMed ID: 17476043
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A comparative evaluation of software for the analysis of liquid chromatography-tandem mass spectrometry data from isotope coded affinity tag experiments.
    Moulder R; Filén JJ; Salmi J; Katajamaa M; Nevalainen OS; Oresic M; Aittokallio T; Lahesmaa R; Nyman TA
    Proteomics; 2005 Jul; 5(11):2748-60. PubMed ID: 15952233
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Automated protein identification by tandem mass spectrometry: issues and strategies.
    Hernandez P; Müller M; Appel RD
    Mass Spectrom Rev; 2006; 25(2):235-54. PubMed ID: 16284939
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Proteomics by FTICR mass spectrometry: top down and bottom up.
    Bogdanov B; Smith RD
    Mass Spectrom Rev; 2005; 24(2):168-200. PubMed ID: 15389855
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Charger: combination of signal processing and statistical learning algorithms for precursor charge-state determination from electron-transfer dissociation spectra.
    Sadygov RG; Hao Z; Huhmer AF
    Anal Chem; 2008 Jan; 80(2):376-86. PubMed ID: 18081262
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.