BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 18592550)

  • 1. Kinetic model for microbial uptake of insoluble solid-state substrate.
    Huang SY; Chou MS
    Biotechnol Bioeng; 1990 Mar; 35(6):547-58. PubMed ID: 18592550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A kinetic model for substrate and energy consumption of microbial growth under substrate-sufficient conditions.
    Zeng AP; Deckwer WD
    Biotechnol Prog; 1995; 11(1):71-9. PubMed ID: 7765990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical modelling of disintegration-limited co-digestion of OFMSW and sewage sludge.
    Esposito G; Frunzo L; Panico A; d'Antonio G
    Water Sci Technol; 2008; 58(7):1513-9. PubMed ID: 18957767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apparent aberrancy in the kinetics of intracellular metabolism of a single substrate by two enzymes. An alternative explanation for anomalies in the kinetics of sulfation and glucuronidation.
    Koster H; Mulder GJ
    Drug Metab Dispos; 1982; 10(4):330-5. PubMed ID: 6126330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dynamics of single-substrate continuous cultures: the role of ribosomes.
    Gupta S; Pilyugin SS; Narang A
    J Theor Biol; 2005 Feb; 232(4):467-90. PubMed ID: 15588630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A practical kinetic model that considers endproduct inhibition in anaerobic digestion processes by including the equilibrium constant.
    Hoh CY; Cord-Ruwisch R
    Biotechnol Bioeng; 1996 Sep; 51(5):597-604. PubMed ID: 18629824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Re-interpretation of the logistic equation for batch microbial growth in relation to Monod kinetics.
    Kargi F
    Lett Appl Microbiol; 2009 Apr; 48(4):398-401. PubMed ID: 19187510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined kinetic analysis of solid-state reactions: a powerful tool for the simultaneous determination of kinetic parameters and the kinetic model without previous assumptions on the reaction mechanism.
    Pérez-Maqueda LA; Criado JM; Sanchez-Jiménez PE
    J Phys Chem A; 2006 Nov; 110(45):12456-62. PubMed ID: 17091950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of dynamic modelling in understanding the microbial contribution to rumen function.
    Dijkstra J; Mills JA; France J
    Nutr Res Rev; 2002 Jun; 15(1):67-90. PubMed ID: 19087399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of growth and sporulation of Bacillus thuringiensis in an intermittent fed batch culture with total cell retention.
    Atehortúa P; Alvarez H; Orduz S
    Bioprocess Biosyst Eng; 2007 Nov; 30(6):447-56. PubMed ID: 17659391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated metabolic model for the aerobic and denitrifying biological phosphorus removal.
    Murnleitner E; Kuba T; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1997 Jun; 54(5):434-50. PubMed ID: 18634136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A metabolic model of the biological phosphorus removal process: II. Validation during start-up conditions.
    Smolders GJ; Bulstra DJ; Jacobs R; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1995 Nov; 48(3):234-45. PubMed ID: 18623483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of anaerobic purification of industrial wastewater.
    Bolle WL; van Breugel J; van Eybergen GC; Kossen NW; van Gils W
    Biotechnol Bioeng; 1986 Apr; 28(4):542-8. PubMed ID: 18555358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dynamic mathematical model for microbial removal of pyritic sulfur from coal.
    Kargi F; Weissman JG
    Biotechnol Bioeng; 1984 Jun; 26(6):604-12. PubMed ID: 18553377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance and kinetic evaluation of anaerobic moving bed biofilm reactor for treating milk permeate from dairy industry.
    Wang S; Rao NC; Qiu R; Moletta R
    Bioresour Technol; 2009 Dec; 100(23):5641-7. PubMed ID: 19631525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of the growth pattern of a single cell of Escherichia coli under anaerobic conditions.
    Ataai MM; Shuler ML
    Biotechnol Bioeng; 1985 Jul; 27(7):1027-35. PubMed ID: 18553773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the kinetics of immobilized glucose oxidase.
    Parker JW; Schwartz CS
    Biotechnol Bioeng; 1987 Oct; 30(6):724-35. PubMed ID: 18581491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A semimechanistic mathematical model for growth of Rhizopus oligosporus in a model solid-state fermentation system.
    Mitchell DA; Do DD; Greenfield PF; Doelle HW
    Biotechnol Bioeng; 1991 Aug; 38(4):353-62. PubMed ID: 18600771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective sludge discharge as the determining factor in SBR aerobic granulation: numerical modelling and experimental verification.
    Li AJ; Li XY
    Water Res; 2009 Aug; 43(14):3387-96. PubMed ID: 19505707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of pre-aeration and inoculum on the start-up of batch thermophilic anaerobic digestion of municipal solid waste.
    Charles W; Walker L; Cord-Ruwisch R
    Bioresour Technol; 2009 Apr; 100(8):2329-35. PubMed ID: 19128961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.