These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 18592557)

  • 1. Comparison of simultaneous wet milling and enzymatic hydrolysis of cellulose in ball mill and attrition mill reactors.
    Furcht PW; Silla H
    Biotechnol Bioeng; 1990 Mar; 35(6):630-45. PubMed ID: 18592557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic analysis of bioconversion of cellulose in attrition bioreactor.
    Jones EO; Lee JM
    Biotechnol Bioeng; 1988 Jan; 31(1):35-40. PubMed ID: 18581560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioconversion of waste cellulose by using an attrition bioreactor.
    Ryu SK; Lee JM
    Biotechnol Bioeng; 1983 Jan; 25(1):53-65. PubMed ID: 18548538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing the enzymatic hydrolysis of cellulosic materials using simultaneous ball milling.
    Mais U; Esteghlalian AR; Saddler JN; Mansfield SD
    Appl Biochem Biotechnol; 2002; 98-100():815-32. PubMed ID: 12018304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential speed two roll mill pretreatment of cellulosic materials for enzymatic hydrolysis.
    Tassinari T; Macy C
    Biotechnol Bioeng; 1977 Sep; 19(9):1321-30. PubMed ID: 890083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic production of cyclodextrins from unliquefied corn starch in an attrition bioreactor.
    Lee YD; Kim HS
    Biotechnol Bioeng; 1991 Apr; 37(9):795-801. PubMed ID: 18600678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic cellulose hydrolysis in an attrition bioreactor combined with an aqueous two-phase system.
    Tjerneld F; Persson I; Lee JM
    Biotechnol Bioeng; 1991 Apr; 37(9):876-82. PubMed ID: 18600688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw.
    Hideno A; Inoue H; Tsukahara K; Fujimoto S; Minowa T; Inoue S; Endo T; Sawayama S
    Bioresour Technol; 2009 May; 100(10):2706-11. PubMed ID: 19195881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonionic surfactants enhanced enzymatic hydrolysis of cellulose by reducing cellulase deactivation caused by shear force and air-liquid interface.
    Lou H; Zeng M; Hu Q; Cai C; Lin X; Qiu X; Yang D; Pang Y
    Bioresour Technol; 2018 Feb; 249():1-8. PubMed ID: 29035726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic hydrolysis of sodium-hydroxide-pretreated sallow in an ultrafiltration membrane reactor.
    Ohlson I; Trägårdh G; Hahn-Hägerdal B
    Biotechnol Bioeng; 1984 Jul; 26(7):647-53. PubMed ID: 18553425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micronization of a soft material: air-jet and micro-ball milling.
    Saleem IY; Smyth HD
    AAPS PharmSciTech; 2010 Dec; 11(4):1642-9. PubMed ID: 21107775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of surfactant and particle size reduction on hydrolysis of deinking sludge and nonrecyclable newsprint.
    Duff SJ; Moritz JW; Casavant TE
    Biotechnol Bioeng; 1995 Feb; 45(3):239-44. PubMed ID: 18623143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient dehalogenation of automobile shredder residue in NaOH/ethylene glycol using a ball mill.
    Kameda T; Fukuda Y; Park KS; Grause G; Yoshioka T
    Chemosphere; 2009 Jan; 74(2):287-92. PubMed ID: 18929394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impacts of cellulase deactivation at the moving air-liquid interface on cellulose conversions at low enzyme loadings.
    Bhagia S; Wyman CE; Kumar R
    Biotechnol Biofuels; 2019; 12():96. PubMed ID: 31044009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of enzymatic hydrolysis by simultaneous attrition of cellulosic substrates.
    Neilson MJ; Kelsey RG; Shafizadeh F
    Biotechnol Bioeng; 1982 Feb; 24(2):293-304. PubMed ID: 18546303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of ball milling and rehydration on powdered mixtures of hydrocolloids.
    Abbaszadeh A; MacNaughtan W; Foster TJ
    Carbohydr Polym; 2014 Feb; 102():978-85. PubMed ID: 24507372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stagewise dilute-acid pretreatment and enzyme hydrolysis of distillers' grains and corn fiber.
    Noureddini H; Byun J; Yu TJ
    Appl Biochem Biotechnol; 2009 Nov; 159(2):553-67. PubMed ID: 19247589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scale-up from batch to flow-through wet milling process for injectable depot formulation.
    Lehocký R; Pěček D; Štěpánek F
    Eur J Pharm Sci; 2016 Dec; 95():122-129. PubMed ID: 27568853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Technology advances for continuous compression milling pretreatment of lignocellulosics for enzymatic hydrolysis.
    Tassinari TH; Macy CF; Spano LA
    Biotechnol Bioeng; 1982 Jul; 24(7):1495-505. PubMed ID: 18546451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic studies of enzymatic hydrolysis of insoluble cellulose: (II). Analysis of extended hydrolysis times.
    Lee YH; Fan LT
    Biotechnol Bioeng; 1983 Apr; 25(4):939-66. PubMed ID: 18548711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.