These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 18593033)

  • 1. [Cadmium and zinc absorption and distribution in various tree species in a mining area].
    Liu WT; Zhang YL; Chen ZM; Zhou QX; Luo HY
    Ying Yong Sheng Tai Xue Bao; 2008 Apr; 19(4):752-6. PubMed ID: 18593033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead-zinc mine area: potential applications for phytoremediation.
    Yang Y; Liang Y; Ghosh A; Song Y; Chen H; Tang M
    Environ Sci Pollut Res Int; 2015 Sep; 22(17):13179-93. PubMed ID: 25929455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lead, zinc, and cadmium uptake, accumulation, and phytoremediation by plants growing around Tang-e Douzan lead-zinc mine, Iran.
    Hesami R; Salimi A; Ghaderian SM
    Environ Sci Pollut Res Int; 2018 Mar; 25(9):8701-8714. PubMed ID: 29322395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accumulation of cadmium and zinc in Evodiopanax innovans.
    Takenaka C; Kobayashi M; Kanaya S
    Environ Geochem Health; 2009 Dec; 31(6):609-15. PubMed ID: 18850317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoextraction of risk elements by willow and poplar trees.
    Kacálková L; Tlustoš P; Száková J
    Int J Phytoremediation; 2015; 17(1-6):414-21. PubMed ID: 25495931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cadmium tolerance and accumulation of Elsholtzia argyi origining from a zinc/lead mining site - a hydroponics experiment.
    Li S; Wang F; Ru M; Ni W
    Int J Phytoremediation; 2014; 16(7-12):1257-67. PubMed ID: 24933916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavy metal accumulation in trees growing on contaminated sites in Central Europe.
    Unterbrunner R; Puschenreiter M; Sommer P; Wieshammer G; Tlustos P; Zupan M; Wenzel WW
    Environ Pollut; 2007 Jul; 148(1):107-14. PubMed ID: 17224228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uptake of heavy metals by native species growing in a mining area in Sardinia, Italy: discovering native flora for phytoremediation.
    Barbafieri M; Dadea C; Tassi E; Bretzel F; Fanfani L
    Int J Phytoremediation; 2011; 13(10):985-97. PubMed ID: 21972566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytoextraction of toxic trace elements by Sorghum bicolor inoculated with Streptomyces pactum (Act12) in contaminated soils.
    Ali A; Guo D; Mahar A; Wang P; Ma F; Shen F; Li R; Zhang Z
    Ecotoxicol Environ Saf; 2017 May; 139():202-209. PubMed ID: 28135667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prospective application of Leucaena leucocephala for phytoextraction of Cd and Zn and nitrogen fixation in metal polluted soils.
    Saraswat S; Rai JP
    Int J Phytoremediation; 2011 Mar; 13(3):271-88. PubMed ID: 21598792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Risk assessment for safety of soils and vegetables around a lead/zinc mine.
    Li J; Xie ZM; Xu JM; Sun YF
    Environ Geochem Health; 2006; 28(1-2):37-44. PubMed ID: 16528596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of fly ash-aided phytostabilisation of highly contaminated soils after an 8-year field trial Part 2. Influence on plants.
    Pourrut B; Lopareva-Pohu A; Pruvot C; Garçon G; Verdin A; Waterlot C; Bidar G; Shirali P; Douay F
    Sci Total Environ; 2011 Oct; 409(21):4504-10. PubMed ID: 21871650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoextraction potential of poplar (Populus alba L. var. pyramidalis Bunge) from calcareous agricultural soils contaminated by cadmium.
    Hu Y; Nan Z; Jin C; Wang N; Luo H
    Int J Phytoremediation; 2014; 16(5):482-95. PubMed ID: 24912230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars.
    Dos Santos Utmazian MN; Wieshammer G; Vega R; Wenzel WW
    Environ Pollut; 2007 Jul; 148(1):155-65. PubMed ID: 17241723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal accumulation in wild plants surrounding mining wastes.
    González RC; González-Chávez MC
    Environ Pollut; 2006 Nov; 144(1):84-92. PubMed ID: 16631286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China.
    Yanqun Z; Yuan L; Jianjun C; Haiyan C; Li Q; Schvartz C
    Environ Int; 2005 Jul; 31(5):755-62. PubMed ID: 15910971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cd and Zn accumulation in plants from the Padaeng zinc mine area.
    Phaenark C; Pokethitiyook P; Kruatrachue M; Ngernsansaruay C
    Int J Phytoremediation; 2009 Jul; 11(5):479-95. PubMed ID: 19810350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The accumulation of elements in plants growing spontaneously on small heaps left by the historical Zn-Pb ore mining.
    Stefanowicz AM; Stanek M; Woch MW; Kapusta P
    Environ Sci Pollut Res Int; 2016 Apr; 23(7):6524-34. PubMed ID: 26635220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficiency of repeated phytoextraction of cadmium and zinc from an agricultural soil contaminated with sewage sludge.
    Luo K; Ma T; Liu H; Wu L; Ren J; Nai F; Li R; Chen L; Luo Y; Christie P
    Int J Phytoremediation; 2015; 17(1-6):575-82. PubMed ID: 25747245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoremediation of Cadmium by Native Plants Grown on Mining Soil.
    Palutoglu M; Akgul B; Suyarko V; Yakovenko M; Kryuchenko N; Sasmaz A
    Bull Environ Contam Toxicol; 2018 Feb; 100(2):293-297. PubMed ID: 29177694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.