These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 18593284)

  • 41. Thiol metabolism in preterm infants during the first week of life.
    Ahola T; Levonen AL; Fellman V; Lapatto R
    Scand J Clin Lab Invest; 2004; 64(7):649-58. PubMed ID: 15513322
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Age-related changes of antioxidant enzyme activities, glutathione status and lipid peroxidation in rat erythrocytes after heat stress.
    Oztürk O; Gümüşlü S
    Life Sci; 2004 Aug; 75(13):1551-65. PubMed ID: 15261761
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of oak wood polyphenols on cysteine, homocysteine and glutathione total levels and PON1 activities in human adult volunteers - a pilot study.
    Deáková Z; Országhová Z; Andrezálová L; Slezák P; Lehotay J; Muchová J; Bürki C; Ďuračková Z
    Gen Physiol Biophys; 2015 Jan; 34(1):73-80. PubMed ID: 25367762
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thiol supplementation in aged animals alters antioxidant enzyme activity after heat stress.
    Morrison JP; Coleman MC; Aunan ES; Walsh SA; Spitz DR; Kregel KC
    J Appl Physiol (1985); 2005 Dec; 99(6):2271-7. PubMed ID: 16099896
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Age-related changes in glutathione availability and skeletal muscle carbonyl content in healthy rats.
    Mosoni L; Breuillé D; Buffière C; Obled C; Mirand PP
    Exp Gerontol; 2004 Feb; 39(2):203-10. PubMed ID: 15036413
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Increased oxidative stress with aging reduces chondrocyte survival: correlation with intracellular glutathione levels.
    Carlo MD; Loeser RF
    Arthritis Rheum; 2003 Dec; 48(12):3419-30. PubMed ID: 14673993
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Impairment of cell and plasma redox state in subjects professionally exposed to chromium.
    De Mattia G; Bravi MC; Laurenti O; De Luca O; Palmeri A; Sabatucci A; Mendico G; Ghiselli A
    Am J Ind Med; 2004 Aug; 46(2):120-5. PubMed ID: 15273963
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Detection of glutathione within single erythrocyte of different ages and pathological state using microfluidic chips coupled with laser induced fluorescence.
    Hao M; Li C; Liu R; Jing M
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 149():600-6. PubMed ID: 25983061
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Mechanism of changes in the rate of glycolysis and levels of ATP and 2,3-diphosphoglycerate in human erythrocytes during aging].
    Bogatskaia LN; Pisaruk AV
    Ukr Biokhim Zh (1978); 1987; 59(5):81-3. PubMed ID: 3686699
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Markers of oxidative stress in erythrocytes and plasma during aging in humans.
    Pandey KB; Rizvi SI
    Oxid Med Cell Longev; 2010; 3(1):2-12. PubMed ID: 20716923
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Age-related changes on glucose transport and utilization of human erythrocytes: effect of oxidative stress.
    Güven M; Ozkiliç A; Kanigür-Sultuybek G; Ulutin T
    Gerontology; 1999; 45(2):79-82. PubMed ID: 9933729
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Variations in thermal fragility of erythrocytes with aging. II. Studies on a female population of all age groups.
    GOLDSCHMIDT L
    Gerontologia; 1962; 6():126-32. PubMed ID: 13899853
    [No Abstract]   [Full Text] [Related]  

  • 53. [Biochemistry of aging of human erythrocytes].
    LOHR GW; WALLER HD; KARGES O; SCHLEGEL B; MULLER AA
    Klin Wochenschr; 1958 Nov; 36(21):1008-13. PubMed ID: 13612095
    [No Abstract]   [Full Text] [Related]  

  • 54. The ageing of red cells.
    PRANKERD TA
    J Physiol; 1958 Sep; 143(2):325-31. PubMed ID: 13588558
    [No Abstract]   [Full Text] [Related]  

  • 55. Roles of Erythrocytes in Human Health and Disease 2.0.
    Misiti F
    Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38674029
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Aging and clearance of erythrocytes.
    Gassner C
    Transfus Med Hemother; 2012 Oct; 39(5):297-8. PubMed ID: 23801918
    [No Abstract]   [Full Text] [Related]  

  • 57. The reducing power of cysteine.
    Kendall EC; Loewen DF
    Biochem J; 1928; 22(3):649-68. PubMed ID: 16744063
    [No Abstract]   [Full Text] [Related]  

  • 58. L-cysteine efflux in erythrocytes as a function of human age: correlation with reduced glutathione and total anti-oxidant potential.
    Kumar P; Maurya PK
    Rejuvenation Res; 2013 Jun; 16(3):179-84. PubMed ID: 23442131
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Trioxidized cysteine in the aging proteome mimics the structural dynamics and interactome of phosphorylated serine.
    Sánchez Milán JA; Fernández-Rhodes M; Guo X; Mulet M; Ngan SC; Iyappan R; Katoueezadeh M; Sze SK; Serra A; Gallart-Palau X
    Aging Cell; 2024 Mar; 23(3):e14062. PubMed ID: 38111315
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Whey protein concentrate protects against age-dependent alteration in redox biomarkers.
    Garg G; Singh AK; Singh S; Verma AK; Rizvi SI
    Biol Futur; 2020 Sep; 71(3):273-281. PubMed ID: 34554512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.