BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 18593664)

  • 1. A computational framework for modelling solid tumour growth.
    Lloyd BA; Szczerba D; Rudin M; Székely G
    Philos Trans A Math Phys Eng Sci; 2008 Sep; 366(1879):3301-18. PubMed ID: 18593664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico estimates of the free energy rates in growing tumor spheroids.
    Narayanan H; Verner SN; Mills KL; Kemkemer R; Garikipati K
    J Phys Condens Matter; 2010 May; 22(19):194122. PubMed ID: 21386444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuum versus discrete model: a comparison for multicellular tumour spheroids.
    Schaller G; Meyer-Hermann M
    Philos Trans A Math Phys Eng Sci; 2006 Jun; 364(1843):1443-64. PubMed ID: 16766354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards whole-organ modelling of tumour growth.
    Alarcón T; Byrne HM; Maini PK
    Prog Biophys Mol Biol; 2004; 85(2-3):451-72. PubMed ID: 15142757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies.
    McDougall SR; Anderson AR; Chaplain MA; Sherratt JA
    Bull Math Biol; 2002 Jul; 64(4):673-702. PubMed ID: 12216417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupled modelling of tumour angiogenesis, tumour growth and blood perfusion.
    Cai Y; Xu S; Wu J; Long Q
    J Theor Biol; 2011 Jun; 279(1):90-101. PubMed ID: 21392511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiphase modelling of vascular tumour growth in two spatial dimensions.
    Hubbard ME; Byrne HM
    J Theor Biol; 2013 Jan; 316():70-89. PubMed ID: 23032218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multiphase model describing vascular tumour growth.
    Breward CJ; Byrne HM; Lewis CE
    Bull Math Biol; 2003 Jul; 65(4):609-40. PubMed ID: 12875336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical modelling of the Warburg effect in tumour cords.
    Astanin S; Preziosi L
    J Theor Biol; 2009 Jun; 258(4):578-90. PubMed ID: 19232360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling aspects of cancer dynamics: a review.
    Byrne HM; Alarcon T; Owen MR; Webb SD; Maini PK
    Philos Trans A Math Phys Eng Sci; 2006 Jun; 364(1843):1563-78. PubMed ID: 16766361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A phenomenological approach to the simulation of metabolism and proliferation dynamics of large tumour cell populations.
    Chignola R; Milotti E
    Phys Biol; 2005 Mar; 2(1):8-22. PubMed ID: 16204852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling embryogenesis and cancer: an approach based on an equilibrium between the autostabilization of stochastic gene expression and the interdependence of cells for proliferation.
    Laforge B; Guez D; Martinez M; Kupiec JJ
    Prog Biophys Mol Biol; 2005 Sep; 89(1):93-120. PubMed ID: 15826673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Taking advantage of tumor cell adaptations to hypoxia for developing new tumor markers and treatment strategies.
    Ebbesen P; Pettersen EO; Gorr TA; Jobst G; Williams K; Kieninger J; Wenger RH; Pastorekova S; Dubois L; Lambin P; Wouters BG; Van Den Beucken T; Supuran CT; Poellinger L; Ratcliffe P; Kanopka A; Görlach A; Gasmann M; Harris AL; Maxwell P; Scozzafava A
    J Enzyme Inhib Med Chem; 2009 Apr; 24 Suppl 1():1-39. PubMed ID: 19330638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical modelling, simulation and prediction of tumour-induced angiogenesis.
    Chaplain MA; Anderson AR
    Invasion Metastasis; 1996; 16(4-5):222-34. PubMed ID: 9311387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion.
    Gerisch A; Chaplain MA
    J Theor Biol; 2008 Feb; 250(4):684-704. PubMed ID: 18068728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A LQ-based kinetic model formulation for exploring dynamics of treatment response of tumours in patients.
    Scheidegger S; Lutters G; Bodis S
    Z Med Phys; 2011 Sep; 21(3):164-73. PubMed ID: 21237624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mathematical modelling of cancer invasion: implications of cell adhesion variability for tumour infiltrative growth patterns.
    Domschke P; Trucu D; Gerisch A; A J Chaplain M
    J Theor Biol; 2014 Nov; 361():41-60. PubMed ID: 25064659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling of anisotropic growth in biological tissues. A new approach and computational aspects.
    Menzel A
    Biomech Model Mechanobiol; 2005 Mar; 3(3):147-71. PubMed ID: 15778872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delay equations modeling the effects of phase-specific drugs and immunotherapy on proliferating tumor cells.
    Barbarossa MV; Kuttler C; Zinsl J
    Math Biosci Eng; 2012 Apr; 9(2):241-57. PubMed ID: 22901063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A history of the study of solid tumour growth: the contribution of mathematical modelling.
    Araujo RP; McElwain DL
    Bull Math Biol; 2004 Sep; 66(5):1039-91. PubMed ID: 15294418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.