These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 1859433)

  • 1. Regulation of phosphoenolpyruvate carboxylase from maize leaves by nitrate and alanine.
    Garson L; Gray V
    Biochem Int; 1991 Jan; 23(2):299-305. PubMed ID: 1859433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short-term nitrogen-induced modulation of phosphoenolpyruvate carboxylase in tobacco and maize leaves.
    Murchie EH; Ferrario-Méry S; Valadier MH; Foyer CH
    J Exp Bot; 2000 Aug; 51(349):1349-56. PubMed ID: 10944147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Limited proteolysis by trypsin influences activity of maize phosphoenolpyruvate carboxylase.
    Maralihalli G; Bhagwat AS
    Indian J Biochem Biophys; 2001 Dec; 38(6):361-7. PubMed ID: 11989665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological implications of the kinetics of maize leaf phosphoenolpyruvate carboxylase.
    Tovar-Méndez A; Mújica-Jiménez C; Muñoz-Clares RA
    Plant Physiol; 2000 May; 123(1):149-60. PubMed ID: 10806233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light/dark regulation of maize leaf phosphoenolpyruvate carboxylase by in vivo phosphorylation.
    Jiao JA; Chollet R
    Arch Biochem Biophys; 1988 Mar; 261(2):409-17. PubMed ID: 3355158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of phosphoenolpyruvate carboxylase from mature maize seeds: properties of phosphorylated and dephosphorylated forms.
    Cerný M; Doubnerová V; Müller K; Ryšlavá H
    Biochimie; 2010 Oct; 92(10):1362-70. PubMed ID: 20600561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active-site-directed inhibition of phosphoenolpyruvate carboxylase from maize leaves by bromopyruvate.
    Gonzalez DH; Iglesias AA; Andreo CS
    Arch Biochem Biophys; 1986 Feb; 245(1):179-86. PubMed ID: 3947097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resolution and identification of C4 phosphoenolpyruvate-carboxylase protein-kinase polypeptides and their reversible light activation in maize leaves.
    Li B; Chollet R
    Arch Biochem Biophys; 1993 Dec; 307(2):416-9. PubMed ID: 8274031
    [No Abstract]   [Full Text] [Related]  

  • 9. Salt induction and the partial purification/characterization of phosphoenolpyruvate carboxylase protein-serine kinase from an inducible crassulacean-acid-metabolism (CAM) plant, Mesembryanthemum crystallinum L.
    Li B; Chollet R
    Arch Biochem Biophys; 1994 Oct; 314(1):247-54. PubMed ID: 7944403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification, oligomerization state and malate sensitivity of maize leaf phosphoenolpyruvate carboxylase.
    McNaughton GA; Fewson CA; Wilkins MB; Nimmo HG
    Biochem J; 1989 Jul; 261(2):349-55. PubMed ID: 2775222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Illumination increases the phosphorylation state of maize leaf phosphoenolpyruvate carboxylase by causing an increase in the activity of a protein kinase.
    McNaughton GA; MacKintosh C; Fewson CA; Wilkins MB; Nimmo HG
    Biochim Biophys Acta; 1991 Jul; 1093(2-3):189-95. PubMed ID: 1863599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Re-examination of the roles of PEP and Mg2+ in the reaction catalysed by the phosphorylated and non-phosphorylated forms of phosphoenolpyruvate carboxylase from leaves of Zea mays. Effects of the activators glucose 6-phosphate and glycine.
    Tovar-Méndez A; Rodríguez-Sotres R; López-Valentín DM; Muñoz-Clares RA
    Biochem J; 1998 Jun; 332 ( Pt 3)(Pt 3):633-42. PubMed ID: 9620864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dimeric form of phosphoenolpyruvate carboxylase isolated from maize: physical and kinetic properties.
    Jawali N
    Arch Biochem Biophys; 1990 Feb; 277(1):61-8. PubMed ID: 2306125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of pH on inactivation of maize phosphoenolpyruvate carboxylase.
    Wedding RT; Black MK
    Arch Biochem Biophys; 1990 Nov; 282(2):284-9. PubMed ID: 2122805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies of the allosteric properties of maize leaf phosphoenolpyruvate carboxylase with the phosphoenolpyruvate analog phosphomycin as activator.
    Mújica-Jiménez C; Castellanos-Martínez A; Muñoz-Clares RA
    Biochim Biophys Acta; 1998 Jul; 1386(1):132-44. PubMed ID: 9675261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic evidence of the existence of a regulatory phosphoenolpyruvate binding site in maize leaf phosphoenolpyruvate carboxylase.
    Rodríguez-Sotres R; Muñoz-Clares RA
    Arch Biochem Biophys; 1990 Jan; 276(1):180-90. PubMed ID: 2297221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hysteretic nature of phosphoenolpyruvate carboxylase isolated from maize.
    Jawali N
    Arch Biochem Biophys; 1990 Feb; 277(1):69-73. PubMed ID: 2306126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic and isotope effect studies of maize phosphoenolpyruvate carboxylase.
    O'Leary MH; Rife JE; Slater JD
    Biochemistry; 1981 Dec; 20(25):7308-14. PubMed ID: 7317383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulatory phosphorylation of banana fruit phosphoenolpyruvate carboxylase by a copurifying phosphoenolpyruvate carboxylase-kinase.
    Law RD; Plaxton WC
    Eur J Biochem; 1997 Jul; 247(2):642-51. PubMed ID: 9266708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Marked modulation by phosphate of phosphoenolpyruvate carboxylase in leaves of Amaranthus hypochondriacus, a NAD-ME type C4 plant: decrease in malate sensitivity but no change in the phosphorylation status.
    Murmu J; Chinthapalli B; Raghavendra AS
    J Exp Bot; 2003 Dec; 54(393):2661-8. PubMed ID: 14585826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.