These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 18594514)

  • 1. Switch of rhodopsin expression in terminally differentiated Drosophila sensory neurons.
    Sprecher SG; Desplan C
    Nature; 2008 Jul; 454(7203):533-7. PubMed ID: 18594514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binary cell fate decisions and fate transformation in the Drosophila larval eye.
    Mishra AK; Tsachaki M; Rister J; Ng J; Celik A; Sprecher SG
    PLoS Genet; 2013; 9(12):e1004027. PubMed ID: 24385925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adult and larval photoreceptors use different mechanisms to specify the same Rhodopsin fates.
    Sprecher SG; Pichaud F; Desplan C
    Genes Dev; 2007 Sep; 21(17):2182-95. PubMed ID: 17785526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feedback from rhodopsin controls rhodopsin exclusion in Drosophila photoreceptors.
    Vasiliauskas D; Mazzoni EO; Sprecher SG; Brodetskiy K; Johnston RJ; Lidder P; Vogt N; Celik A; Desplan C
    Nature; 2011 Oct; 479(7371):108-12. PubMed ID: 21983964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The neuronal transcription factor erect wing regulates specification and maintenance of Drosophila R8 photoreceptor subtypes.
    Hsiao HY; Jukam D; Johnston R; Desplan C
    Dev Biol; 2013 Sep; 381(2):482-90. PubMed ID: 23850772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhodopsin patterning in central photoreceptor cells of the blowfly Calliphora vicina: cloning and characterization of Calliphora rhodopsins Rh3, Rh5 and Rh6.
    Schmitt A; Vogt A; Friedmann K; Paulsen R; Huber A
    J Exp Biol; 2005 Apr; 208(Pt 7):1247-56. PubMed ID: 15781885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blue- and green-absorbing visual pigments of Drosophila: ectopic expression and physiological characterization of the R8 photoreceptor cell-specific Rh5 and Rh6 rhodopsins.
    Salcedo E; Huber A; Henrich S; Chadwell LV; Chou WH; Paulsen R; Britt SG
    J Neurosci; 1999 Dec; 19(24):10716-26. PubMed ID: 10594055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photic input pathways that mediate the Drosophila larval response to light and circadian rhythmicity are developmentally related but functionally distinct.
    Hassan J; Iyengar B; Scantlebury N; Rodriguez Moncalvo V; Campos AR
    J Comp Neurol; 2005 Jan; 481(3):266-75. PubMed ID: 15593374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Four of the six Drosophila rhodopsin-expressing photoreceptors can mediate circadian entrainment in low light.
    Saint-Charles A; Michard-Vanhée C; Alejevski F; Chélot E; Boivin A; Rouyer F
    J Comp Neurol; 2016 Oct; 524(14):2828-44. PubMed ID: 26972685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opposing transcriptional and post-transcriptional roles for Scalloped in binary Hippo-dependent neural fate decisions.
    Xie B; Morton DB; Cook TA
    Dev Biol; 2019 Nov; 455(1):51-59. PubMed ID: 31265830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The insulator protein BEAF-32 is required for Hippo pathway activity in the terminal differentiation of neuronal subtypes.
    Jukam D; Viets K; Anderson C; Zhou C; DeFord P; Yan J; Cao J; Johnston RJ
    Development; 2016 Jul; 143(13):2389-97. PubMed ID: 27226322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoreceptor differentiation in Drosophila: from immature neurons to functional photoreceptors.
    Mollereau B; Domingos PM
    Dev Dyn; 2005 Mar; 232(3):585-92. PubMed ID: 15704118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iroquois complex genes induce co-expression of rhodopsins in Drosophila.
    Mazzoni EO; Celik A; Wernet MF; Vasiliauskas D; Johnston RJ; Cook TA; Pichaud F; Desplan C
    PLoS Biol; 2008 Apr; 6(4):e97. PubMed ID: 18433293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Larval optic nerve and adult extra-retinal photoreceptors sequentially associate with clock neurons during Drosophila brain development.
    Malpel S; Klarsfeld A; Rouyer F
    Development; 2002 Mar; 129(6):1443-53. PubMed ID: 11880353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct visual pathways mediate Drosophila larval light avoidance and circadian clock entrainment.
    Keene AC; Mazzoni EO; Zhen J; Younger MA; Yamaguchi S; Blau J; Desplan C; Sprecher SG
    J Neurosci; 2011 Apr; 31(17):6527-34. PubMed ID: 21525293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stochastic de-repression of Rhodopsins in single photoreceptors of the fly retina.
    Sood P; Johnston RJ; Kussell E
    PLoS Comput Biol; 2012 Feb; 8(2):e1002357. PubMed ID: 22319431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of R7 and R8 differentiation by the spalt genes.
    Domingos PM; Brown S; Barrio R; Ratnakumar K; Frankfort BJ; Mardon G; Steller H; Mollereau B
    Dev Biol; 2004 Sep; 273(1):121-33. PubMed ID: 15302602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The HisCl1 histamine receptor acts in photoreceptors to synchronize Drosophila behavioral rhythms with light-dark cycles.
    Alejevski F; Saint-Charles A; Michard-Vanhée C; Martin B; Galant S; Vasiliauskas D; Rouyer F
    Nat Commun; 2019 Jan; 10(1):252. PubMed ID: 30651542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Switch in Thermal Preference in Drosophila Larvae Depends on Multiple Rhodopsins.
    Sokabe T; Chen HC; Luo J; Montell C
    Cell Rep; 2016 Oct; 17(2):336-344. PubMed ID: 27705783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Drosophila larval visual system: high-resolution analysis of a simple visual neuropil.
    Sprecher SG; Cardona A; Hartenstein V
    Dev Biol; 2011 Oct; 358(1):33-43. PubMed ID: 21781960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.