These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
332 related articles for article (PubMed ID: 18594573)
1. Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging. Langehanenberg P; Kemper B; Dirksen D; von Bally G Appl Opt; 2008 Jul; 47(19):D176-82. PubMed ID: 18594573 [TBL] [Abstract][Full Text] [Related]
2. Digital holographic microscopy for live cell applications and technical inspection. Kemper B; von Bally G Appl Opt; 2008 Feb; 47(4):A52-61. PubMed ID: 18239699 [TBL] [Abstract][Full Text] [Related]
3. Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy. Kemper B; Kosmeier S; Langehanenberg P; von Bally G; Bredebusch I; Domschke W; Schnekenburger J J Biomed Opt; 2007; 12(5):054009. PubMed ID: 17994897 [TBL] [Abstract][Full Text] [Related]
4. Investigation of living pancreas tumor cells by digital holographic microscopy. Kemper B; Carl D; Schnekenburger J; Bredebusch I; Schäfer M; Domschke W; von Bally G J Biomed Opt; 2006; 11(3):34005. PubMed ID: 16822055 [TBL] [Abstract][Full Text] [Related]
5. Automated three-dimensional tracking of living cells by digital holographic microscopy. Langehanenberg P; Ivanova L; Bernhardt I; Ketelhut S; Vollmer A; Dirksen D; Georgiev G; von Bally G; Kemper B J Biomed Opt; 2009; 14(1):014018. PubMed ID: 19256706 [TBL] [Abstract][Full Text] [Related]
6. Quantitative phase imaging of cells in a flow cytometry arrangement utilizing Michelson interferometer-based off-axis digital holographic microscopy. Min J; Yao B; Trendafilova V; Ketelhut S; Kastl L; Greve B; Kemper B J Biophotonics; 2019 Sep; 12(9):e201900085. PubMed ID: 31169960 [TBL] [Abstract][Full Text] [Related]
7. Digital self-referencing quantitative phase microscopy by wavefront folding in holographic image reconstruction. Coppola G; Di Caprio G; Gioffré M; Puglisi R; Balduzzi D; Galli A; Miccio L; Paturzo M; Grilli S; Finizio A; Ferraro P Opt Lett; 2010 Oct; 35(20):3390-2. PubMed ID: 20967076 [TBL] [Abstract][Full Text] [Related]
8. Digital reconstruction based on angular spectrum diffraction with the ridge of wavelet transform in holographic phase-contrast microscopy. Weng J; Zhong J; Hu C Opt Express; 2008 Dec; 16(26):21971-81. PubMed ID: 19104632 [TBL] [Abstract][Full Text] [Related]
9. Simplified approach for quantitative digital holographic phase contrast imaging of living cells. Kemper B; Vollmer A; Rommel CE; Schnekenburger J; von Bally G J Biomed Opt; 2011 Feb; 16(2):026014. PubMed ID: 21361698 [TBL] [Abstract][Full Text] [Related]
10. Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction. Ferraro P; Alferi D; De Nicola S; De Petrocellis L; Finizio A; Pierattini G Opt Lett; 2006 May; 31(10):1405-7. PubMed ID: 16642120 [TBL] [Abstract][Full Text] [Related]
11. Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Marquet P; Rappaz B; Magistretti PJ; Cuche E; Emery Y; Colomb T; Depeursinge C Opt Lett; 2005 Mar; 30(5):468-70. PubMed ID: 15789705 [TBL] [Abstract][Full Text] [Related]
12. A practical criterion for focusing of unstained cell samples using a digital holographic microscope. Malik R; Sharma P; Poulose S; Ahlawat S; Khare K J Microsc; 2020 Aug; 279(2):114-122. PubMed ID: 32441768 [TBL] [Abstract][Full Text] [Related]
13. Movies of cellular and sub-cellular motion by digital holographic microscopy. Mann CJ; Yu L; Kim MK Biomed Eng Online; 2006 Mar; 5():21. PubMed ID: 16556319 [TBL] [Abstract][Full Text] [Related]
14. Coherent noise reduction in digital holographic phase contrast microscopy by slightly shifting object. Pan F; Xiao W; Liu S; Wang F; Rong L; Li R Opt Express; 2011 Feb; 19(5):3862-9. PubMed ID: 21369211 [TBL] [Abstract][Full Text] [Related]
15. Digital holographic microscopy and focusing methods based on image sharpness. İlhan HA; Doğar M; Özcan M J Microsc; 2014 Sep; 255(3):138-49. PubMed ID: 24894875 [TBL] [Abstract][Full Text] [Related]
16. Sequential processing of quantitative phase images for the study of cell behaviour in real-time digital holographic microscopy. Zikmund T; Kvasnica L; Týč M; Křížová A; Colláková J; Chmelík R J Microsc; 2014 Nov; 256(2):117-25. PubMed ID: 25142511 [TBL] [Abstract][Full Text] [Related]
17. Parameter-optimized digital holographic microscope for high-resolution living-cell analysis. Carl D; Kemper B; Wernicke G; von Bally G Appl Opt; 2004 Dec; 43(36):6536-44. PubMed ID: 15646774 [TBL] [Abstract][Full Text] [Related]
18. Fourier-domain digital holographic optical coherence imaging of living tissue. Jeong K; Turek JJ; Nolte DD Appl Opt; 2007 Aug; 46(22):4999-5008. PubMed ID: 17676107 [TBL] [Abstract][Full Text] [Related]
19. Automatic phase aberration compensation for digital holographic microscopy based on phase variation minimization. Liu S; Lian Q; Qing Y; Xu Z Opt Lett; 2018 Apr; 43(8):1870-1873. PubMed ID: 29652386 [TBL] [Abstract][Full Text] [Related]
20. Quantitative phase imaging of live cells with near on-axis digital holographic microscopy using constrained optimization approach. Pandiyan VP; Khare K; John R J Biomed Opt; 2016 Oct; 21(10):106003. PubMed ID: 27768784 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]