These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 18594615)

  • 1. Tracking in a ground-to-satellite optical link: effects due to lead-ahead and aperture mismatch, including temporal tracking response.
    Basu S; Voelz D
    J Opt Soc Am A Opt Image Sci Vis; 2008 Jul; 25(7):1594-608. PubMed ID: 18594615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fade statistics of a ground-to-satellite optical link in the presence of lead-ahead and aperture mismatch.
    Basu S; Voelz D; Borah DK
    Appl Opt; 2009 Mar; 48(7):1274-87. PubMed ID: 19252627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beam width and transmitter power adaptive to tracking system performance for free-space optical communication.
    Arnon S; Rotman S; Kopeika NS
    Appl Opt; 1997 Aug; 36(24):6095-101. PubMed ID: 18259455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive Optics pre-compensated laser uplink to LEO and GEO.
    Osborn J; Townson MJ; Farley OJD; Reeves A; Calvo RM
    Opt Express; 2021 Feb; 29(4):6113-6132. PubMed ID: 33726139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Earth-to-geosynchronous satellite laser beam transmission.
    Aruga T; Araki K; Hayashi R; Iwabuchi T; Takahashi M; Nakamura S
    Appl Opt; 1985 Jan; 24(1):53-6. PubMed ID: 18216903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Power versus stabilization for laser satellite communication.
    Arnon S
    Appl Opt; 1999 May; 38(15):3229-33. PubMed ID: 18319913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of time averaging on optical scintillation in a ground-to-satellite atmospheric propagation.
    Toyoshima M; Araki K
    Appl Opt; 2000 Apr; 39(12):1911-9. PubMed ID: 18345087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and in-orbit test of a high accuracy pointing method in satellite-to-ground quantum communication.
    Zhang L; Dai J; Li C; Wu J; Jia J; Wang J
    Opt Express; 2020 Mar; 28(6):8291-8307. PubMed ID: 32225457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate beacon positioning method for satellite-to-ground optical communication.
    Wang Q; Tong L; Yu S; Tan L; Ma J
    Opt Express; 2017 Dec; 25(25):30996-31005. PubMed ID: 29245778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical and temporal irradiance fluctuations modeling for a ground-to-geostationary satellite optical link.
    Camboulives AR; Velluet MT; Poulenard S; Saint-Antonin L; Michau V
    Appl Opt; 2018 Feb; 57(4):709-721. PubMed ID: 29400742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance limitations of a free-space optical communication satellite network owing to vibrations: heterodyne detection.
    Arnon S; Rotman SR; Kopeika NS
    Appl Opt; 1998 Sep; 37(27):6366-74. PubMed ID: 18286137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ground-to-satellite quantum teleportation.
    Ren JG; Xu P; Yong HL; Zhang L; Liao SK; Yin J; Liu WY; Cai WQ; Yang M; Li L; Yang KX; Han X; Yao YQ; Li J; Wu HY; Wan S; Liu L; Liu DQ; Kuang YW; He ZP; Shang P; Guo C; Zheng RH; Tian K; Zhu ZC; Liu NL; Lu CY; Shu R; Chen YA; Peng CZ; Wang JY; Pan JW
    Nature; 2017 Sep; 549(7670):70-73. PubMed ID: 28825708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free Space Ground to Satellite Optical Communications Using Kramers-Kronig Transceiver in the Presence of Atmospheric Turbulence.
    Naghshvarianjahromi M; Kumar S; Deen MJ
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signal-to-noise ratio limitations for intensity correlation imaging.
    Fried DL; Riker J; Agrawal B
    J Opt Soc Am A Opt Image Sci Vis; 2014 Jul; 31(7):1536-46. PubMed ID: 25121442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive optics correction into single mode fiber for a low Earth orbiting space to ground optical communication link using the OPALS downlink.
    Wright MW; Morris JF; Kovalik JM; Andrews KS; Abrahamson MJ; Biswas A
    Opt Express; 2015 Dec; 23(26):33705-12. PubMed ID: 26832033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-parameter influenced acquisition model with an in-orbit jitter for inter-satellite laser communication of the LCES system.
    Hu S; Yu H; Duan Z; Zhu Y; Cao C; Zhou M; Li G; Liu H
    Opt Express; 2022 Sep; 30(19):34362-34377. PubMed ID: 36242449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Earth laser beacon sensor for earth-oriented geosynchronous satellites.
    Sepp G
    Appl Opt; 1975 Jul; 14(7):1719-26. PubMed ID: 20154897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Improved Protocol for Performing Two-Way Satellite Time and Frequency Transfer Using a Satellite in an Inclined Geo-Synchronous Orbit.
    Wang W; Yang X; Ding S; Li W; Su H; Wei P; Cao F; Chen L; Gong J; Li ZG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Aug; 65(8):1475-1486. PubMed ID: 29993576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Approach for recognizing and tracking beacon in inter-satellite optical communication based on optical flow method.
    Wang Q; Yu S; Tan L; Ma J
    Opt Express; 2018 Oct; 26(21):28080-28090. PubMed ID: 30469864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Demonstration of 100 Gbps coherent free-space optical communications at LEO tracking rates.
    Walsh SM; Karpathakis SFE; McCann AS; Dix-Matthews BP; Frost AM; Gozzard DR; Gravestock CT; Schediwy SW
    Sci Rep; 2022 Oct; 12(1):18345. PubMed ID: 36316353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.