These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 18595048)

  • 1. Characterization of E. coli cell disintegrates from a bead mill and high pressure homogenizers.
    Agerkvist I; Enfors SO
    Biotechnol Bioeng; 1990 Dec; 36(11):1083-9. PubMed ID: 18595048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of processing parameters on disintegration of Chlorella cells in various types of homogenizers.
    Doucha J; Lívanský K
    Appl Microbiol Biotechnol; 2008 Dec; 81(3):431-40. PubMed ID: 18758766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disintegration of microorganisms.
    White MD; Marcus D
    Adv Biotechnol Processes; 1988; 8():51-96. PubMed ID: 3052499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disruption of native and recombinant Escherichia coli in a high-pressure homogenizer.
    Sauer T; Robinson CW; Glick BR
    Biotechnol Bioeng; 1989 Apr; 33(10):1330-42. PubMed ID: 18587868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of particle size distribution changes occurring during high-pressure disruption of bakers' yeast.
    Siddiqi SF; Titchener-Hooker NJ; Shamlou PA
    Biotechnol Bioeng; 1996 Apr; 50(2):145-50. PubMed ID: 18626931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Centrifugal processing of cell debris and inclusion bodies from recombinant Escherichia coli.
    Wong HH; O'Neill BK; Middelberg AP
    Bioseparation; 1996; 6(6):361-72. PubMed ID: 9352683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relation between cell disruption conditions, cell debris particle size, and inclusion body release.
    Van Hee P; Middelberg AP; Van Der Lans RG; Van Der Wielen LA
    Biotechnol Bioeng; 2004 Oct; 88(1):100-10. PubMed ID: 15449302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel technique for the measurement of disruption in high-pressure homogenization: Studies on E. coli containing recombinant inclusion bodies.
    Middelberg AP; O'Neill BK; L Bogle ID; Snoswell MA
    Biotechnol Bioeng; 1991 Aug; 38(4):363-70. PubMed ID: 18600772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization study of Escherichia coli TB1 cell disruption for cytochrome b5 recovery in a small-scale bead mill.
    Belo I; Santos JA; Cabral JM; Mota M
    Biotechnol Prog; 1996; 12(2):201-4. PubMed ID: 8857189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A kinetic analysis of cell disruption by bead mill. The influence of bead loading, bead size and agitator speed.
    Melendres AV; Honda H; Shiragami N; Unno H
    Bioseparation; 1991; 2(4):231-6. PubMed ID: 1368088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the extent of disruption of Bakers' yeast on protein adsorption in expanded beds.
    Balasundaram B; Harrison ST
    J Biotechnol; 2008 Feb; 133(3):360-9. PubMed ID: 17933410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental investigation of nanoparticle dispersion by beads milling with centrifugal bead separation.
    Inkyo M; Tahara T; Iwaki T; Iskandar F; Hogan CJ; Okuyama K
    J Colloid Interface Sci; 2006 Dec; 304(2):535-40. PubMed ID: 17022990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study of the influence of yeast cell debris on protein and alpha-glucosidase adsorption at various zones within the expanded bed using in-bed sampling.
    Balasundaram B; Harrison ST; Li J; Chase HA
    Biotechnol Bioeng; 2008 Feb; 99(3):614-24. PubMed ID: 17680682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disruption of a recombinant yeast for the release of beta-galactosidase.
    Garrido F; Banerjee UC; Chisti Y; Moo-Young M
    Bioseparation; 1994 Oct; 4(5):319-28. PubMed ID: 7765495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of process interactions between cell disruption and debris clarification stages in the recovery of yeast intracellular products.
    Clarkson AI; Lefevre P; Titchener-Hooker NJ
    Biotechnol Prog; 1993; 9(5):462-7. PubMed ID: 7764162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell preparation methods influence Escherichia coli D21g surface chemistry and transport in saturated sand.
    Tazehkand SS; Torkzaban S; Bradford SA; Walker SL
    J Environ Qual; 2008; 37(6):2108-15. PubMed ID: 18948464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Step change in the efficiency of centrifugation through cell engineering: co-expression of Staphylococcal nuclease to reduce the viscosity of the bioprocess feedstock.
    Balasundaram B; Nesbeth D; Ward JM; Keshavarz-Moore E; Bracewell DG
    Biotechnol Bioeng; 2009 Sep; 104(1):134-42. PubMed ID: 19415775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using a CFD model to understand the fluid dynamics promoting E. coli breakage in a high-pressure homogenizer.
    Miller J; Rogowski M; Kelly W
    Biotechnol Prog; 2002; 18(5):1060-7. PubMed ID: 12363358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical/Physical Methods of Cell Disruption and Tissue Homogenization.
    Goldberg S
    Methods Mol Biol; 2021; 2261():563-585. PubMed ID: 33421015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.