These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 18595077)

  • 1. Production of essential L-branched-chain amino acids in bioreactors containing artificial cells immobilized multienzyme systems and dextran-NAD+.
    Gu KF; Chang TM
    Biotechnol Bioeng; 1990 Jul; 36(3):263-9. PubMed ID: 18595077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of ammonia or urea into essential amino acids, L-leucine, L-valine, and L-isoleucine, using artificial cells containing an immobilized multienzyme system and dextran-NAD+. 2. Yeast alcohol dehydrogenase for coenzyme recycling.
    Gu KF; Chang TM
    Biotechnol Appl Biochem; 1990 Jun; 12(3):227-36. PubMed ID: 1694439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of alpha-ketoglutarate into L-glutamic acid with urea as ammonium source using multienzyme systems and dextran-NAD+ immobilized by microencapsulation within artificial cells in a bioreactor.
    Gu KF; Chang TM
    Biotechnol Bioeng; 1988 Jul; 32(3):363-8. PubMed ID: 18584759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion of ammonia or urea into L-leucine, L-valine, and L-isoleucine using artificial cells containing an immobilized multienzyme system and dextran-NAD+. Glucose dehydrogenase for co-factor recycling.
    Gu KF; Chang TM
    ASAIO Trans; 1988; 34(1):24-8. PubMed ID: 2454127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion of ammonia or urea into essential amino acids, L-leucine, L-valine, and L-isoleucine using artificial cells containing an immobilized multienzyme system and dextran-NAD. L-lactic dehydrogenase for coenzyme recycling.
    Gu KF; Chang TM
    Appl Biochem Biotechnol; 1990 Nov; 26(2):115-24. PubMed ID: 1708978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conversion of urea or ammonia into essential amino acids (L-leucine, L-valine, and L-isoleucine) using multienzyme systems and NADH-dextran immobilised in artificial cells.
    Gu KF; Chang TM
    Biomater Artif Cells Artif Organs; 1987; 15(1):297-303. PubMed ID: 3449145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilization of the L- and DL-isomers of alpha-keto-beta-methylvaleric acid by rats and comparative efficacy of the keto analogs of branched-chain amino acids provided as ornithine, lysine and histidine salts.
    Funk MA; Lowry KR; Baker DH
    J Nutr; 1987 Sep; 117(9):1550-5. PubMed ID: 3116181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of a highly substituted N(6)-linked immobilized NAD(+) derivative using a rapid solid-phase modular approach: suitability for use with the kinetic locking-on tactic for bioaffinity purification of NAD(+)-dependent dehydrogenases.
    Tynan J; Forde J; McMahon M; Mulcahy P
    Protein Expr Purif; 2000 Dec; 20(3):421-34. PubMed ID: 11087682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A "stripping" ligand tactic for use with the kinetic locking-on strategy: its use in the resolution and bioaffinity chromatographic purification of NAD(+)-dependent dehydrogenases.
    O'Flaherty M; O'Carra P; McMahon M; Mulcahy P
    Protein Expr Purif; 1999 Aug; 16(3):424-31. PubMed ID: 10425164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fundamental differences in bioaffinity of amino acid dehydrogenases for N6- and S6-linked immobilized cofactors using kinetic-based enzyme-capture strategies.
    Forde J; Oakey L; Jennings L; Mulcahy P
    Anal Biochem; 2005 Mar; 338(1):102-12. PubMed ID: 15707940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NADH-dependent inhibition of branched-chain fatty acid synthesis in Bacillus subtilis.
    Oku H; Fujita K; Nomoto T; Suzuki K; Iwasaki H; Chinen I
    Biosci Biotechnol Biochem; 1998 Apr; 62(4):622-7. PubMed ID: 9614692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Onchocerca volvulus: effect of suramin on lactate dehydrogenase and malate dehydrogenase.
    Walter RD; Schulz-Key H
    Tropenmed Parasitol; 1980 Mar; 31(1):55-8. PubMed ID: 7376252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and myocardial kinetics of N-13 and C-11 labeled branched-chain L-amino acids.
    Barrio JR; Baumgartner FJ; Henze E; Stauber MS; Egbert JE; MacDonald NS; Schelbert HR; Phelps ME; Liu FT
    J Nucl Med; 1983 Oct; 24(10):937-44. PubMed ID: 6619964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The D-2-hydroxyacid dehydrogenase incorrectly annotated PanE is the sole reduction system for branched-chain 2-keto acids in Lactococcus lactis.
    Chambellon E; Rijnen L; Lorquet F; Gitton C; van Hylckama Vlieg JE; Wouters JA; Yvon M
    J Bacteriol; 2009 Feb; 191(3):873-81. PubMed ID: 19047348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous production of 3-fluoro-L-alanine with alanine dehydrogenase.
    Ohshima T; Wandrey C; Conrad D
    Biotechnol Bioeng; 1989 Jul; 34(3):394-7. PubMed ID: 18588116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous enzymatic transformation in an enzyme membrane reactor with simultaneous NAD(H) regeneration. Reprinted from Biotechnology and Bioengineering, Vol. XXIII, No. 12, Pages 2789-2802 (1981).
    Wichmann R; Wandrey C; Bückmann AF; Kula MR
    Biotechnol Bioeng; 2000 Mar; 67(6):791-804. PubMed ID: 10699858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic synthesis of some (15)N-labelled L-amino acids.
    Chiriac M; Lupan I; Popa F; Palibroda N; Popescu O
    Isotopes Environ Health Stud; 2010 Jun; 46(2):249-54. PubMed ID: 20582794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient and selective enzymatic oxidation system for the synthesis of enantiomerically pure D-tert-leucine.
    Hummel W; Kuzu M; Geueke B
    Org Lett; 2003 Oct; 5(20):3649-50. PubMed ID: 14507195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous Production of l-Alanine with NADH Regeneration by a Nanofiltration Membrane Reactor.
    Lin SS; Miyawaki O; Nakamura K
    Biosci Biotechnol Biochem; 1997 Jan; 61(12):2029-33. PubMed ID: 27396879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene.
    Tokuhiro K; Ishida N; Nagamori E; Saitoh S; Onishi T; Kondo A; Takahashi H
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):883-90. PubMed ID: 19122995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.