BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 18595189)

  • 1. Current steering and current focusing in cochlear implants: comparison of monopolar, tripolar, and virtual channel electrode configurations.
    Berenstein CK; Mens LH; Mulder JJ; Vanpoucke FJ
    Ear Hear; 2008 Apr; 29(2):250-60. PubMed ID: 18595189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Speech perception with mono- and quadrupolar electrode configurations: a crossover study.
    Mens LH; Berenstein CK
    Otol Neurotol; 2005 Sep; 26(5):957-64. PubMed ID: 16151343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using current steering to increase spectral resolution in CII and HiRes 90K users.
    Koch DB; Downing M; Osberger MJ; Litvak L
    Ear Hear; 2007 Apr; 28(2 Suppl):38S-41S. PubMed ID: 17496643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying cochlear implant channels with poor electrode-neuron interfaces: electrically evoked auditory brain stem responses measured with the partial tripolar configuration.
    Bierer JA; Faulkner KF; Tremblay KL
    Ear Hear; 2011; 32(4):436-44. PubMed ID: 21178633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying cochlear implant channels with poor electrode-neuron interface: partial tripolar, single-channel thresholds and psychophysical tuning curves.
    Bierer JA; Faulkner KF
    Ear Hear; 2010 Apr; 31(2):247-58. PubMed ID: 20090533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual channel discrimination is improved by current focusing in cochlear implant recipients.
    Landsberger DM; Srinivasan AG
    Hear Res; 2009 Aug; 254(1-2):34-41. PubMed ID: 19383534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Within-subjects comparison of the HiRes and Fidelity120 speech processing strategies: speech perception and its relation to place-pitch sensitivity.
    Donaldson GS; Dawson PK; Borden LZ
    Ear Hear; 2011; 32(2):238-50. PubMed ID: 21084987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Dynamically Focusing Cochlear Implant Strategy Can Improve Vowel Identification in Noise.
    Arenberg JG; Parkinson WS; Litvak L; Chen C; Kreft HA; Oxenham AJ
    Ear Hear; 2018; 39(6):1136-1145. PubMed ID: 29529006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants.
    Friesen LM; Shannon RV; Baskent D; Wang X
    J Acoust Soc Am; 2001 Aug; 110(2):1150-63. PubMed ID: 11519582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparisons between detection threshold and loudness perception for individual cochlear implant channels.
    Bierer JA; Nye AD
    Ear Hear; 2014; 35(6):641-51. PubMed ID: 25036146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical evaluation of higher stimulation rates in the nucleus research platform 8 system.
    Plant K; Holden L; Skinner M; Arcaroli J; Whitford L; Law MA; Nel E
    Ear Hear; 2007 Jun; 28(3):381-93. PubMed ID: 17485987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Current Focusing: A Novel Approach to Loudness Coding in Cochlear Implants.
    de Jong MAM; Briaire JJ; Frijns JHM
    Ear Hear; 2019; 40(1):34-44. PubMed ID: 29742542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adding simultaneous stimulating channels to reduce power consumption in cochlear implants.
    Langner F; Saoji AA; Büchner A; Nogueira W
    Hear Res; 2017 Mar; 345():96-107. PubMed ID: 28104408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of continuous interleaved sampling and simultaneous analog stimulation speech processing strategies in newly implanted adults with a Clarion 1.2 cochlear implant.
    Zwolan TA; Kileny PR; Smith S; Waltzman S; Chute P; Domico E; Firszt J; Hodges A; Mills D; Whearty M; Osberger MJ; Fisher L
    Otol Neurotol; 2005 May; 26(3):455-65. PubMed ID: 15891649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic Current Focusing Compared to Monopolar Stimulation in a Take-Home Trial of Cochlear Implant Users.
    van Groesen NRA; Briaire JJ; de Jong MAM; Frijns JHM
    Ear Hear; 2023 Mar-Apr 01; 44(2):306-317. PubMed ID: 36279119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Threshold and channel interaction in cochlear implant users: evaluation of the tripolar electrode configuration.
    Bierer JA
    J Acoust Soc Am; 2007 Mar; 121(3):1642-53. PubMed ID: 17407901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speech recognition in cochlear implant recipients: comparison of standard HiRes and HiRes 120 sound processing.
    Firszt JB; Holden LK; Reeder RM; Skinner MW
    Otol Neurotol; 2009 Feb; 30(2):146-52. PubMed ID: 19106769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Standard cochlear implantation of adults with residual low-frequency hearing: implications for combined electro-acoustic stimulation.
    Novak MA; Black JM; Koch DB
    Otol Neurotol; 2007 Aug; 28(5):609-14. PubMed ID: 17514064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of electrode configuration and place of stimulation on speech perception with cochlear prostheses.
    Pfingst BE; Franck KH; Xu L; Bauer EM; Zwolan TA
    J Assoc Res Otolaryngol; 2001 Jun; 2(2):87-103. PubMed ID: 11550528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of stimulation rate with the Nucleus 24 ACE speech coding strategy.
    Holden LK; Skinner MW; Holden TA; Demorest ME
    Ear Hear; 2002 Oct; 23(5):463-76. PubMed ID: 12411779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.