These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 18595357)

  • 21. A cerebrospinal fluid shunt: a theoretical concept.
    Magram G
    Childs Nerv Syst; 1995 Oct; 11(10):604-6. PubMed ID: 8556728
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ventriculosagittal sinus shunt placement: technical case report.
    Samadani U; Mattielo JA; Sutton LN
    Neurosurgery; 2003 Sep; 53(3):778-9; discussion 780. PubMed ID: 12943596
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Shunting with gravitational valves--can adjustments end the era of revisions for overdrainage-related events?: clinical article.
    Freimann FB; Sprung C
    J Neurosurg; 2012 Dec; 117(6):1197-204. PubMed ID: 22998061
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Failure of cerebrospinal fluid shunts: part II: overdrainage, loculation, and abdominal complications.
    Browd SR; Gottfried ON; Ragel BT; Kestle JR
    Pediatr Neurol; 2006 Mar; 34(3):171-6. PubMed ID: 16504785
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cerebrospinal fluid hydrodynamics after placement of a shunt with an antisiphon device: a long-term study.
    Lundkvist B; Eklund A; Kristensen B; Fagerlund M; Koskinen LO; Malm J
    J Neurosurg; 2001 May; 94(5):750-6. PubMed ID: 11354406
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ventriculosinus shunt as a reliable option in the treatment of failed ventriculoperitoneal shunt: report of 19 cases and review of the literature.
    Li X; Zheng J
    Ann Palliat Med; 2021 Jul; 10(7):7627-7633. PubMed ID: 34353050
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Features of the Sinushunt and its influence on the cerebrospinal fluid system.
    Eklund A; Koskinen LO; Malm J
    J Neurol Neurosurg Psychiatry; 2004 Aug; 75(8):1156-9. PubMed ID: 15258219
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simulation of existing and future electromechanical shunt valves in combination with a model for brain fluid dynamics.
    Elixmann IM; Walter M; Kiefer M; Leonhardt S
    Acta Neurochir Suppl; 2012; 113():77-81. PubMed ID: 22116428
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PROSAIKA: a prospective multicenter registry with the first programmable gravitational device for hydrocephalus shunting.
    Kehler U; Kiefer M; Eymann R; Wagner W; Tschan CA; Langer N; Rohde V; Ludwig HC; Gliemroth J; Meier U; Lemcke J; Thomale UW; Fritsch M; Krauss JK; Mirzayan MJ; Schuhmann M; Huthmann A
    Clin Neurol Neurosurg; 2015 Oct; 137():132-6. PubMed ID: 26196478
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prevention of ventricular catheter obstruction and slit ventricle syndrome by the prophylactic use of the Integra antisiphon device in shunt therapy for pediatric hypertensive hydrocephalus: a 25-year follow-up study.
    Gruber RW; Roehrig B
    J Neurosurg Pediatr; 2010 Jan; 5(1):4-16. PubMed ID: 20043731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Computer-assisted test ring for cerebrospinal fluid drainage systems].
    Leonhardt S; Bluhm V; Steudel WI
    Biomed Tech (Berl); 1994; 39(7-8):188-95. PubMed ID: 7948662
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [The Codman Medos programmable shunt valve. Evaluation of 53 implantations in 50 patients].
    Belliard H; Roux FX; Turak B; Nataf F; Devaux B; Cioloca C
    Neurochirurgie; 1996; 42(3):139-45; discussion 145-6. PubMed ID: 9084740
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro experiment for verification of the tandem shunt valve system: a novel method for treating hydrocephalus by flexibly controlling cerebrospinal fluid flow and intracranial pressure.
    Aihara Y; Shoji I; Okada Y
    J Neurosurg Pediatr; 2013 Jan; 11(1):43-7. PubMed ID: 23140212
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic model of communicating hydrocephalus for surgery simulation.
    Clatz O; Litrico S; Delingette H; Paquis P; Ayache N
    IEEE Trans Biomed Eng; 2007 Apr; 54(4):755-8. PubMed ID: 17405384
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Medos Hakim programmable valve in the treatment of pediatric hydrocephalus.
    Reinprecht A; Dietrich W; Bertalanffy A; Czech T
    Childs Nerv Syst; 1997; 13(11-12):588-93; discussion 593-4. PubMed ID: 9454974
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Overdrainage in the treatment of hydrocephalus].
    Hirsch JF; Hoppe-Hirsch E; Sainte-Rose C
    Pediatrie; 1991; 46(8-9):617-23. PubMed ID: 1660122
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Shunt assistant valve: bench test investigations and clinical performance.
    Tokoro K; Suzuki S; Chiba Y; Tsuda M
    Childs Nerv Syst; 2002 Oct; 18(9-10):492-9. PubMed ID: 12382174
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Micro-fabricated shunt to mimic arachnoid granulations for the treatment of communicating hydrocephalus.
    Kralick F; Oh J; Medina T; Noh HM
    Acta Neurochir Suppl; 2012; 114():239-42. PubMed ID: 22327701
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of programmable shunt valves vs standard valves for communicating hydrocephalus of adults: a retrospective analysis of 407 patients.
    Ringel F; Schramm J; Meyer B
    Surg Neurol; 2005 Jan; 63(1):36-41; discussion 41. PubMed ID: 15639519
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Long-term survival rates of gravity-assisted, adjustable differential pressure valves in infants with hydrocephalus.
    Gebert AF; Schulz M; Schwarz K; Thomale UW
    J Neurosurg Pediatr; 2016 May; 17(5):544-51. PubMed ID: 26799410
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.