These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 18595804)

  • 1. Real-time MRI-based control of a ferromagnetic core for endovascular navigation.
    Tamaz S; Gourdeau R; Chanu A; Mathieu JB; Martel S
    IEEE Trans Biomed Eng; 2008 Jul; 55(7):1854-63. PubMed ID: 18595804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Method of propulsion of a ferromagnetic core in the cardiovascular system through magnetic gradients generated by an MRI system.
    Mathieu JB; Beaudoin G; Martel S
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):292-9. PubMed ID: 16485758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MRI-based microrobotic system for the propulsion and navigation of ferromagnetic microcapsules.
    Belharet K; Folio D; Ferreira A
    Minim Invasive Ther Allied Technol; 2010 Jun; 19(3):157-69. PubMed ID: 20497068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computer-assisted protocol for endovascular target interventions using a clinical MRI system for controlling untethered microdevices and future nanorobots.
    Martel S; Mathieu JB; Felfoul O; Chanu A; Aboussouan E; Tamaz S; Pouponneau P; Yahia L; Beaudoin G; Soulez G; Mankiewicz M
    Comput Aided Surg; 2008 Nov; 13(6):340-52. PubMed ID: 19031286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid polarizing field cycling in magnetic resonance imaging.
    Matter NI; Scott GC; Grafendorfer T; Macovski A; Conolly SM
    IEEE Trans Med Imaging; 2006 Jan; 25(1):84-93. PubMed ID: 16398417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Faraday effect position sensor for interventional magnetic resonance imaging.
    Bock M; Umathum R; Sikora J; Brenner S; Aguor EN; Semmler W
    Phys Med Biol; 2006 Feb; 51(4):999-1009. PubMed ID: 16467592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gradient waveform synthesis for magnetic propulsion using MRI gradient coils.
    Han BH; Park S; Lee SY
    Phys Med Biol; 2008 Sep; 53(17):4639-49. PubMed ID: 18695296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adapting the clinical MRI software environment for real-time navigation of an endovascular untethered ferromagnetic bead for future endovascular interventions.
    Chanu A; Felfoul O; Beaudoin G; Martel S
    Magn Reson Med; 2008 Jun; 59(6):1287-97. PubMed ID: 18506794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preliminary investigation of the feasibility of magnetic propulsion for future microdevices in blood vessels.
    Mathieu JB; Martel S; Yahia L; Soulez G; Beaudoin G
    Biomed Mater Eng; 2005; 15(5):367-74. PubMed ID: 16179757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endovascular magnetically guided robots: navigation modeling and optimization.
    Arcese L; Fruchard M; Ferreira A
    IEEE Trans Biomed Eng; 2012 Apr; 59(4):977-87. PubMed ID: 22203703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence design and software environment for real-time navigation of a wireless ferromagnetic device using MRI system and single echo 3D tracking.
    Chanu A; Aboussouan E; Tamaz S; Martel S
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1746-9. PubMed ID: 17946065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bidimensional MRI-based navigation system using a PID controller.
    Tamaz S; Gourdeau R; Martel S
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4424-7. PubMed ID: 17947085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electromagnetic analysis of the slotted-tube resonator with a circular cross section for MRI applications.
    Benabdallah N; Benahmed N; Benyoucef B; Bouhmidi R; Khelif M
    Phys Med Biol; 2007 Aug; 52(16):4943-52. PubMed ID: 17671345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time software platform design for in-vivo navigation of a small ferromagnetic device in a swine carotid artery using a magnetic resonance imaging system.
    Chanu A; Martel S
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6585-8. PubMed ID: 18003534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Research on designing MRI permanent magnet].
    Wu HC; Liu ZM; Zhou HQ
    Zhongguo Yi Liao Qi Xie Za Zhi; 2006 May; 30(3):176-9. PubMed ID: 16929773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A real-time articulated human motion tracking using tri-axis inertial/magnetic sensors package.
    Zhu R; Zhou Z
    IEEE Trans Neural Syst Rehabil Eng; 2004 Jun; 12(2):295-302. PubMed ID: 15218943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modular design of receiver coil arrays.
    De Zanche N; Massner JA; Leussler C; Pruessmann KP
    NMR Biomed; 2008 Jul; 21(6):644-54. PubMed ID: 18157799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autonomous catheter insertion system using magnetic motion capture sensor for endovascular surgery.
    Tercero C; Ikeda S; Uchiyama T; Fukuda T; Arai F; Okada Y; Ono Y; Hattori R; Yamamoto T; Negoro M; Takahashi I
    Int J Med Robot; 2007 Mar; 3():52-8. PubMed ID: 17441026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-chip three dimensional microcoils for MRI at the microscale.
    Badilita V; Kratt K; Baxan N; Mohmmadzadeh M; Burger T; Weber H; Elverfeldt DV; Hennig J; Korvink JG; Wallrabe U
    Lab Chip; 2010 Jun; 10(11):1387-90. PubMed ID: 20407728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic resonance imaging-compatible, three-degrees-of-freedom joystick for surgical robot.
    Harja J; Tikkanen J; Sorvoja H; Myllylä R
    Int J Med Robot; 2007 Dec; 3(4):365-71. PubMed ID: 18008387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.