These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 185960)

  • 1. Virus movement in soil columns flooded with secondary sewage effluent.
    Lance JC; Gerba CP; Melnick JL
    Appl Environ Microbiol; 1976 Oct; 32(4):520-6. PubMed ID: 185960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poliovirus removal from primary and secondary sewage effluent by soil filtration.
    Gerba CP; Lance JC
    Appl Environ Microbiol; 1978 Aug; 36(2):247-51. PubMed ID: 211936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of soil permeability on virus removal through soil columns.
    Wang DS; Gerba CP; Lance JC
    Appl Environ Microbiol; 1981 Jul; 42(1):83-8. PubMed ID: 6266338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Virus movement in soil during saturated and unsaturated flow.
    Lance JC; Gerba CP
    Appl Environ Microbiol; 1984 Feb; 47(2):335-7. PubMed ID: 6324673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of enteroviruses to soil cores and their subsequent elution by artificial rainwater.
    Landry EF; Vaughn JM; Thomas MZ; Beckwith CA
    Appl Environ Microbiol; 1979 Oct; 38(4):680-7. PubMed ID: 231936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poliovirus retention in 75-cm soil cores after sewage and rainwater application.
    Landry EF; Vaughn JM; Penello WF
    Appl Environ Microbiol; 1980 Dec; 40(6):1032-8. PubMed ID: 6257159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Survival of enteroviruses in rapid-infiltration basins during the land application of wastewater.
    Hurst CJ; Gerba CP; Lance JC; Rice RC
    Appl Environ Microbiol; 1980 Aug; 40(2):192-200. PubMed ID: 6258471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Method of soil column preparation for the evaluation of viral transport.
    Funderburg SW; Moore BE; Sorber CA; Sagik BP
    Appl Environ Microbiol; 1979 Jul; 38(1):102-7. PubMed ID: 225992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Persistence of poliovirus 1 in soil and on vegetables grown in soil previously flooded with inoculated sewage sludge or effluent.
    Tierney JT; Sullivan R; Larkin EP
    Appl Environ Microbiol; 1977 Jan; 33(1):109-13. PubMed ID: 189685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of ionic composition of suspending solution on virus adsorption by a soil column.
    Lance JC; Gerba CP
    Appl Environ Microbiol; 1984 Mar; 47(3):484-8. PubMed ID: 16346487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of various soil water samplers for virological sampling.
    Wang DS; Lance JC; Gerba CP
    Appl Environ Microbiol; 1980 Mar; 39(3):662-4. PubMed ID: 6247976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poliovirus retention in soil columns after application of chemical- and polyelectrolyte-conditioned dewatered sludges.
    Pancorbo OC; Bitton G; Farrah SR; Gifford GE; Overman AR
    Appl Environ Microbiol; 1988 Jan; 54(1):118-23. PubMed ID: 2830848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative reduction of Norwalk virus, poliovirus type 1, F+ RNA coliphage MS2 and Escherichia coli in miniature soil columns.
    Meschke JS; Sobsey MD
    Water Sci Technol; 2003; 47(3):85-90. PubMed ID: 12639010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virus removal during groundwater recharge: effects of infiltration rate on adsorption of poliovirus to soil.
    Vaughn JM; Landry EF; Beckwith CA; Thomas MZ
    Appl Environ Microbiol; 1981 Jan; 41(1):139-47. PubMed ID: 6261682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fate of virus in wastewater applied to slow-infiltration land treatment systems.
    Schaub SA; Bausum HT; Taylor GW
    Appl Environ Microbiol; 1982 Aug; 44(2):383-94. PubMed ID: 6289746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Demonstration of virus in groundwater after effluent discharge onto soil.
    Wellings FM; Lewis AL; Mountain CW; Pierce LV
    Appl Microbiol; 1975 Jun; 29(6):751-7. PubMed ID: 168809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virus removal within a soil infiltration zone as affected by effluent composition, application rate, and soil type.
    Van Cuyk S; Siegrist RL
    Water Res; 2007 Feb; 41(3):699-709. PubMed ID: 16963100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of talc-Celite and polyelectrolyte 60 in virus recovery from sewage: development of technique and experiments with poliovirus (type 1, Sabin)-contaminated multilitre samples.
    Sattar SA; Westwood JC
    Can J Microbiol; 1976 Nov; 22(11):1620-7. PubMed ID: 10064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the overland runoff mode of land wastewater treatment for virus removal.
    Schaub SA; Kenyon KF; Bledsoe B; Thomas RE
    Appl Environ Microbiol; 1980 Jan; 39(1):127-34. PubMed ID: 6243901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions and survival of enteric viruses in soil materials.
    Sobsey MD; Dean CH; Knuckles ME; Wagner RA
    Appl Environ Microbiol; 1980 Jul; 40(1):92-101. PubMed ID: 6250478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.