BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 18596158)

  • 1. Endogenous glutamatergic control of rhythmically active mammalian respiratory motoneurons in vivo.
    Steenland HW; Liu H; Horner RL
    J Neurosci; 2008 Jul; 28(27):6826-35. PubMed ID: 18596158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Respiratory activation of the genioglossus muscle involves both non-NMDA and NMDA glutamate receptors at the hypoglossal motor nucleus in vivo.
    Steenland HW; Liu H; Sood S; Liu X; Horner RL
    Neuroscience; 2006; 138(4):1407-24. PubMed ID: 16476523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endogenous excitatory drive modulating respiratory muscle activity across sleep-wake states.
    Chan E; Steenland HW; Liu H; Horner RL
    Am J Respir Crit Care Med; 2006 Dec; 174(11):1264-73. PubMed ID: 16931636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An endogenous glutamatergic drive onto somatic motoneurons contributes to the stereotypical pattern of muscle tone across the sleep-wake cycle.
    Burgess C; Lai D; Siegel J; Peever J
    J Neurosci; 2008 Apr; 28(18):4649-60. PubMed ID: 18448642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microdialysis perfusion of 5-HT into hypoglossal motor nucleus differentially modulates genioglossus activity across natural sleep-wake states in rats.
    Jelev A; Sood S; Liu H; Nolan P; Horner RL
    J Physiol; 2001 Apr; 532(Pt 2):467-81. PubMed ID: 11306665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of genioglossus muscle activity across sleep-wake states by histamine at the hypoglossal motor pool.
    Bastedo T; Chan E; Park E; Liu H; Horner RL
    Sleep; 2009 Oct; 32(10):1313-24. PubMed ID: 19848360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of inhibitory amino acids in control of hypoglossal motor outflow to genioglossus muscle in naturally sleeping rats.
    Morrison JL; Sood S; Liu H; Park E; Liu X; Nolan P; Horner RL
    J Physiol; 2003 Nov; 552(Pt 3):975-91. PubMed ID: 12937280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of endogenous serotonin in modulating genioglossus muscle activity in awake and sleeping rats.
    Sood S; Morrison JL; Liu H; Horner RL
    Am J Respir Crit Care Med; 2005 Nov; 172(10):1338-47. PubMed ID: 16020803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GABAA receptor antagonism at the hypoglossal motor nucleus increases genioglossus muscle activity in NREM but not REM sleep.
    Morrison JL; Sood S; Liu H; Park E; Nolan P; Horner RL
    J Physiol; 2003 Apr; 548(Pt 2):569-83. PubMed ID: 12611924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclic nucleotides modulate genioglossus and hypoglossal responses to excitatory inputs in rats.
    Aoki CR; Liu H; Downey GP; Mitchell J; Horner RL
    Am J Respir Crit Care Med; 2006 Mar; 173(5):555-65. PubMed ID: 16322643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of serotonergic medullary raphe obscurus neurons suppresses genioglossus and diaphragm activities in anesthetized but not conscious rats.
    Sood S; Raddatz E; Liu X; Liu H; Horner RL
    J Appl Physiol (1985); 2006 Jun; 100(6):1807-21. PubMed ID: 16484356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression of genioglossus muscle tone and activity during reflex hypercapnic stimulation by GABA(A) mechanisms at the hypoglossal motor nucleus in vivo.
    Liu X; Sood S; Liu H; Nolan P; Morrison JL; Horner RL
    Neuroscience; 2003; 116(1):249-59. PubMed ID: 12535957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opposing muscarinic and nicotinic modulation of hypoglossal motor output to genioglossus muscle in rats in vivo.
    Liu X; Sood S; Liu H; Horner RL
    J Physiol; 2005 Jun; 565(Pt 3):965-80. PubMed ID: 15817635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excitatory effects of hypocretin-1 (orexin-A) in the trigeminal motor nucleus are reversed by NMDA antagonism.
    Peever JH; Lai YY; Siegel JM
    J Neurophysiol; 2003 May; 89(5):2591-600. PubMed ID: 12611960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opioid receptor mechanisms at the hypoglossal motor pool and effects on tongue muscle activity in vivo.
    Hajiha M; DuBord MA; Liu H; Horner RL
    J Physiol; 2009 Jun; 587(Pt 11):2677-92. PubMed ID: 19403616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein kinase A activators produce a short-term, but not long-term, increase in respiratory-drive transmission at the hypoglossal motor nucleus in vivo.
    DuBord MA; Liu H; Horner RL
    Neurosci Lett; 2010 Dec; 486(1):14-8. PubMed ID: 20851162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Riluzole blocks persistent Na+ and Ca2+ currents and modulates release of glutamate via presynaptic NMDA receptors on neonatal rat hypoglossal motoneurons in vitro.
    Lamanauskas N; Nistri A
    Eur J Neurosci; 2008 May; 27(10):2501-14. PubMed ID: 18445055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Persistent rhythmic oscillations induced by nicotine on neonatal rat hypoglossal motoneurons in vitro.
    Lamanauskas N; Nistri A
    Eur J Neurosci; 2006 Nov; 24(9):2543-56. PubMed ID: 17100842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a pharmacological target for genioglossus reactivation throughout sleep.
    Grace KP; Hughes SW; Horner RL
    Sleep; 2014 Jan; 37(1):41-50. PubMed ID: 24470694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of TASK-1/3 channels at the hypoglossal motoneuron pool and effects on tongue motor output and responses to excitatory inputs in vivo: implications for strategies for obstructive sleep apnea pharmacotherapy.
    Gurges P; Liu H; Horner RL
    Sleep; 2021 Jan; 44(1):. PubMed ID: 32745213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.