BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 18596169)

  • 1. Functional interaction between the hippocampus and nucleus accumbens shell is necessary for the acquisition of appetitive spatial context conditioning.
    Ito R; Robbins TW; Pennartz CM; Everitt BJ
    J Neurosci; 2008 Jul; 28(27):6950-9. PubMed ID: 18596169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective excitotoxic lesions of the hippocampus and basolateral amygdala have dissociable effects on appetitive cue and place conditioning based on path integration in a novel Y-maze procedure.
    Ito R; Robbins TW; McNaughton BL; Everitt BJ
    Eur J Neurosci; 2006 Jun; 23(11):3071-80. PubMed ID: 16819997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Opposing roles of nucleus accumbens core and shell dopamine in the modulation of limbic information processing.
    Ito R; Hayen A
    J Neurosci; 2011 Apr; 31(16):6001-7. PubMed ID: 21508225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrolytic lesions to nucleus accumbens core and shell have dissociable effects on conditioning to discrete and contextual cues in aversive and appetitive procedures respectively.
    Cassaday HJ; Horsley RR; Norman C
    Behav Brain Res; 2005 May; 160(2):222-35. PubMed ID: 15863219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The hippocampus and appetitive Pavlovian conditioning: effects of excitotoxic hippocampal lesions on conditioned locomotor activity and autoshaping.
    Ito R; Everitt BJ; Robbins TW
    Hippocampus; 2005; 15(6):713-21. PubMed ID: 15906393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleus Accumbens Core and Shell Differentially Encode Reward-Associated Cues after Reinforcer Devaluation.
    West EA; Carelli RM
    J Neurosci; 2016 Jan; 36(4):1128-39. PubMed ID: 26818502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Caudal Nucleus Accumbens Core Is Critical in the Regulation of Cue-Elicited Approach-Avoidance Decisions.
    Hamel L; Thangarasa T; Samadi O; Ito R
    eNeuro; 2017; 4(1):. PubMed ID: 28275709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of hippocampal NMDA receptors and nucleus accumbens D1 receptors in the amphetamine-produced conditioned place preference in rats.
    Tan SE
    Brain Res Bull; 2008 Dec; 77(6):412-9. PubMed ID: 18929625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. At the limbic-motor interface: disconnection of basolateral amygdala from nucleus accumbens core and shell reveals dissociable components of incentive motivation.
    Shiflett MW; Balleine BW
    Eur J Neurosci; 2010 Nov; 32(10):1735-43. PubMed ID: 21044174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acquisition of a spatial conditioned place preference is impaired by amygdala lesions and improved by fornix lesions.
    White NM; McDonald RJ
    Behav Brain Res; 1993 Jun; 55(2):269-81. PubMed ID: 8357530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The basolateral amygdala differentially regulates conditioned neural responses within the nucleus accumbens core and shell.
    Jones JL; Day JJ; Wheeler RA; Carelli RM
    Neuroscience; 2010 Sep; 169(3):1186-98. PubMed ID: 20570714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disconnection of the anterior cingulate cortex and nucleus accumbens core impairs Pavlovian approach behavior: further evidence for limbic cortical-ventral striatopallidal systems.
    Parkinson JA; Willoughby PJ; Robbins TW; Everitt BJ
    Behav Neurosci; 2000 Feb; 114(1):42-63. PubMed ID: 10718261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amphetamine exposure selectively enhances hippocampus-dependent spatial learning and attenuates amygdala-dependent cue learning.
    Ito R; Canseliet M
    Neuropsychopharmacology; 2010 Jun; 35(7):1440-52. PubMed ID: 20200510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissociable roles for the nucleus accumbens core and shell in regulating set shifting.
    Floresco SB; Ghods-Sharifi S; Vexelman C; Magyar O
    J Neurosci; 2006 Mar; 26(9):2449-57. PubMed ID: 16510723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitotoxic lesions of the infralimbic, but not prelimbic cortex facilitate reversal of appetitive discriminative context conditioning: the role of the infralimbic cortex in context generalization.
    Ashwell R; Ito R
    Front Behav Neurosci; 2014; 8():63. PubMed ID: 24616678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cortico-Striatal Control over Adaptive Goal-Directed Responding Elicited by Cues Signaling Sucrose Reward or Punishment.
    Hamel L; Cavdaroglu B; Yeates D; Nguyen D; Riaz S; Patterson D; Khan N; Kirolos N; Roper K; Ha QA; Ito R
    J Neurosci; 2022 May; 42(18):3811-3822. PubMed ID: 35351827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basolateral amygdala neurons facilitate reward-seeking behavior by exciting nucleus accumbens neurons.
    Ambroggi F; Ishikawa A; Fields HL; Nicola SM
    Neuron; 2008 Aug; 59(4):648-61. PubMed ID: 18760700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ventral hippocampus, but not the dorsal hippocampus is critical for learned approach-avoidance decision making.
    Schumacher A; Vlassov E; Ito R
    Hippocampus; 2016 Apr; 26(4):530-42. PubMed ID: 26493973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Basolateral amygdala - nucleus accumbens circuitry regulates optimal cue-guided risk/reward decision making.
    van Holstein M; MacLeod PE; Floresco SB
    Prog Neuropsychopharmacol Biol Psychiatry; 2020 Mar; 98():109830. PubMed ID: 31811876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient inactivation of the rat nucleus accumbens does not impair guidance of instrumental behaviour by stimuli predicting reward magnitude.
    Giertler C; Bohn I; Hauber W
    Behav Pharmacol; 2004 Feb; 15(1):55-63. PubMed ID: 15075627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.