BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 18596352)

  • 1. Thermally activated delayed fluorescence in fullerenes.
    Baleizão C; Berberan-Santos MN
    Ann N Y Acad Sci; 2008; 1130():224-34. PubMed ID: 18596352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermally activated delayed fluorescence as a cycling process between excited singlet and triplet states: application to the fullerenes.
    Baleizão C; Berberan-Santos MN
    J Chem Phys; 2007 May; 126(20):204510. PubMed ID: 17552781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual fluorescence sensor for trace oxygen and temperature with unmatched range and sensitivity.
    Baleizão C; Nagl S; Schäferling M; Berberan-Santos MN; Wolfbeis OS
    Anal Chem; 2008 Aug; 80(16):6449-57. PubMed ID: 18651755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photophysical properties of a novel Ni(II)-diporphyrin in presence of fullerenes: insights from experimental and theoretical studies.
    Bhattacharya S; Hashimoto M; Fujimoto A; Kimura T; Uno H; Komatsu N
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jul; 70(2):416-24. PubMed ID: 18272424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensing and imaging of oxygen with parts per billion limits of detection and based on the quenching of the delayed fluorescence of (13)C70 fullerene in polymer hosts.
    Kochmann S; Baleizão C; Berberan-Santos MN; Wolfbeis OS
    Anal Chem; 2013 Feb; 85(3):1300-4. PubMed ID: 23320578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of binding strength for the supramolecular complexation of a designed bisporphyrin with C60, C70 and their derivatives employing absorption spectrophotometric, fluorescence and quantum chemical calculations.
    Mukherjee S; Bauri AK; Bhattacharya S
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Sep; 79(5):1952-8. PubMed ID: 21703923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calixarenes as High Temperature Matrices for Thermally Activated Delayed Fluorescence: C
    Palmeira T; Miranda AS; Marcos PM; Berberan-Santos MN
    Molecules; 2018 Mar; 23(3):. PubMed ID: 29498664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photophysical insights into supramolecular interaction of a designed bisporphyrin with fullerenes C60 and C70.
    Pal D; Furukawa M; Komatsu N; Uno H; Bhattacharya S
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):185-90. PubMed ID: 20947414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monomeric azaheterofullerene derivatives RC59N: influence of the R moiety on spectroscopic and photophysical properties.
    Hauke F; Vostrowsky O; Hirsch A; Quaranta A; Leibl W; Leach S; Edge R; Navaratnam S; Bensasson RV
    Chemistry; 2006 Jun; 12(18):4813-20. PubMed ID: 16619315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imidazole-based excited-state intramolecular proton-transfer (ESIPT) materials: observation of thermally activated delayed fluorescence (TDF).
    Park S; Kwon OH; Lee YS; Jang DJ; Park SY
    J Phys Chem A; 2007 Oct; 111(39):9649-53. PubMed ID: 17760426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ozone addition to C60 and C70 fullerenes: a DFT study.
    Sabirov DSh; Khursan SL; Bulgakov RG
    J Mol Graph Model; 2008 Sep; 27(2):124-30. PubMed ID: 18455456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and photophysics of novel 8-hydroxyquinoline aluminum metal dye with hole transfer groups.
    Wang X; Feng L; Chen Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(4):1433-7. PubMed ID: 18550423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A density functional theory study of shake-up satellites in photoemission of carbon fullerenes and nanotubes.
    Gao B; Wu Z; Luo Y
    J Chem Phys; 2008 Jun; 128(23):234704. PubMed ID: 18570516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excitation energy transfer and trapping in dye-loaded solid particles.
    Rodríguez HB; San Román E
    Ann N Y Acad Sci; 2008; 1130():247-52. PubMed ID: 18596355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics.
    Tao Y; Yuan K; Chen T; Xu P; Li H; Chen R; Zheng C; Zhang L; Huang W
    Adv Mater; 2014 Dec; 26(47):7931-58. PubMed ID: 25230116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence study of fullerene in organic solvents at room temperature.
    Zhao Y; Fang Y; Jiang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Jun; 64(3):564-7. PubMed ID: 16387537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quantum yield map for synthetic eumelanin.
    Nighswander-Rempel SP; Riesz J; Gilmore J; Meredith P
    J Chem Phys; 2005 Nov; 123(19):194901. PubMed ID: 16321107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic states and transitions in C60 and C70 fullerenes.
    Orlandi G; Negri F
    Photochem Photobiol Sci; 2002 May; 1(5):289-308. PubMed ID: 12653466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoinduced energy and electron transfer processes in hexapyropheophorbide a- fullerene [C(60)] molecular systems.
    Regehly M; Ermilov EA; Helmreich M; Hirsch A; Jux N; Röder B
    J Phys Chem B; 2007 Feb; 111(5):998-1006. PubMed ID: 17266254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delayed dissociation of photoexcited porphyrin cations in a storage ring: determination of triplet quantum yields.
    Nielsen CB; Forster JS; Ogilby PR; Nielsen SB
    J Phys Chem A; 2005 May; 109(17):3875-9. PubMed ID: 16833704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.