BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 18596355)

  • 1. Excitation energy transfer and trapping in dye-loaded solid particles.
    Rodríguez HB; San Román E
    Ann N Y Acad Sci; 2008; 1130():247-52. PubMed ID: 18596355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the efficiency of Förster resonant energy transfer from energy relay dyes in dye-sensitized solar cells.
    Hoke ET; Hardin BE; McGehee MD
    Opt Express; 2010 Feb; 18(4):3893-904. PubMed ID: 20389400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trapping of Rhodamine 6G excitation energy on cellulose microparticles.
    López SG; Worringer G; Rodríguez HB; San Román E
    Phys Chem Chem Phys; 2010 Mar; 12(9):2246-53. PubMed ID: 20165774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards building artificial light harvesting complexes: enhanced singlet-singlet energy transfer between donor and acceptor pairs bound to albumins.
    Kumar CV; Duff MR
    Photochem Photobiol Sci; 2008 Dec; 7(12):1522-30. PubMed ID: 19037505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial light-harvesting arrays: electronic energy migration and trapping on a sphere and between spheres.
    Iehl J; Nierengarten JF; Harriman A; Bura T; Ziessel R
    J Am Chem Soc; 2012 Jan; 134(2):988-98. PubMed ID: 22148681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopic study of electron and energy transfer in novel silicon phthalocyanine--boron dipyrromethene triads.
    Ermilov EA; Liu JY; Ng DK; Röder B
    Phys Chem Chem Phys; 2009 Aug; 11(30):6430-40. PubMed ID: 19809675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic energy transfer to the S2 level of the acceptor in functionalised boron dipyrromethene dyes.
    Harriman A; Mallon LJ; Goeb S; Ulrich G; Ziessel R
    Chemistry; 2009; 15(18):4553-64. PubMed ID: 19291726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photophysics of representative ketocyanine dyes: dependence on molecular structure.
    Kedia N; Sarkar A; Shannigrahi M; Bagchi S
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct; 81(1):79-84. PubMed ID: 21724453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy transfer dynamics in light-harvesting assemblies templated by the tobacco mosaic virus coat protein.
    Ma YZ; Miller RA; Fleming GR; Francis MB
    J Phys Chem B; 2008 Jun; 112(22):6887-92. PubMed ID: 18471010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal lens technique to study the effect of pH on electronic energy transfer in organic dye mixtures.
    Kurian A; George SD; Bindhu CV; Nampoori VP; Vallabhan CP
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jul; 67(3-4):678-82. PubMed ID: 17045520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excited-state intramolecular charge transfer in 9-aminoacridine derivative.
    Pereira RV; Garcia Ferreira AP; Gehlen MH
    J Phys Chem A; 2005 Jul; 109(27):5978-83. PubMed ID: 16833932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of concentration on the photophysics of dyes in light-scattering materials.
    Rodríguez HB; San Román E
    Photochem Photobiol; 2013; 89(6):1273-82. PubMed ID: 23735010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distance and orientation dependence of excitation energy transfer: from molecular systems to metal nanoparticles.
    Saini S; Srinivas G; Bagchi B
    J Phys Chem B; 2009 Feb; 113(7):1817-32. PubMed ID: 19128043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and photophysics of novel 8-hydroxyquinoline aluminum metal dye with hole transfer groups.
    Wang X; Feng L; Chen Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(4):1433-7. PubMed ID: 18550423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silica cross-linked nanoparticles encapsulating fluorescent conjugated dyes for energy transfer-based white light emission and porphyrin sensing.
    Gai F; Zhou T; Zhang L; Li X; Hou W; Yang X; Li Y; Zhao X; Xu D; Liu Y; Huo Q
    Nanoscale; 2012 Sep; 4(19):6041-9. PubMed ID: 22930394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dye-modified nanochannel materials for photoelectronic and optical devices.
    Calzaferri G; Li H; Brühwiler D
    Chemistry; 2008; 14(25):7442-9. PubMed ID: 18626875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A close look at fluorescence quenching of organic dyes by tryptophan.
    Doose S; Neuweiler H; Sauer M
    Chemphyschem; 2005 Nov; 6(11):2277-85. PubMed ID: 16224752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic investigations of a novel tricyanofuran dye for nonlinear optics.
    Han L; Jiang Y; Li W; Li Y; Hao P
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(1):86-9. PubMed ID: 18249030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dye induced quenching of firefly luciferase-luciferin bioluminescence.
    KrishnaMurthy NV; Sudhaharan T; Ram Reddy A
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Nov; 68(3):851-9. PubMed ID: 17317285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The red-edge effects: 30 years of exploration.
    Demchenko AP
    Luminescence; 2002; 17(1):19-42. PubMed ID: 11816059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.