These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 18596883)

  • 1. Distribution of basal membrane complex components in elongating lens fibers.
    Lu JY; Mohammed TA; Donohue ST; Al-Ghoul KJ
    Mol Vis; 2008 Jun; 14():1187-203. PubMed ID: 18596883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphology and organization of posterior fiber ends during migration.
    Al-Ghoul KJ; Kuszak JR; Lu JY; Owens MJ
    Mol Vis; 2003 Apr; 9():119-28. PubMed ID: 12707642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular architecture of the lens fiber cell basal membrane complex.
    Bassnett S; Missey H; Vucemilo I
    J Cell Sci; 1999 Jul; 112 ( Pt 13)():2155-65. PubMed ID: 10362545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abnormal fiber end migration in Royal College of Surgeons rats during posterior subcapsular cataract formation.
    Joy A; Mohammed TA; Al-Ghoul KJ
    Mol Vis; 2010 Jul; 16():1453-66. PubMed ID: 20806082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel terminal web-like structure in cortical lens fibers: architecture and functional assessment.
    Al-Ghoul KJ; Lindquist TP; Kirk SS; Donohue ST
    Anat Rec (Hoboken); 2010 Nov; 293(11):1805-15. PubMed ID: 20730867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Basal membrane complex architecture is disrupted during posterior subcapsular cataract formation in Royal College of Surgeons rats.
    Joy A; Al-Ghoul KJ
    Mol Vis; 2014; 20():1777-95. PubMed ID: 25593506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in adhesion complexes define stages in the differentiation of lens fiber cells.
    Beebe DC; Vasiliev O; Guo J; Shui YB; Bassnett S
    Invest Ophthalmol Vis Sci; 2001 Mar; 42(3):727-34. PubMed ID: 11222534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tropomodulin and tropomyosin mediate lens cell actin cytoskeleton reorganization in vitro.
    Fischer RS; Lee A; Fowler VM
    Invest Ophthalmol Vis Sci; 2000 Jan; 41(1):166-74. PubMed ID: 10634617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beta-1 integrin is important for the structural maintenance and homeostasis of differentiating fiber cells.
    Scheiblin DA; Gao J; Caplan JL; Simirskii VN; Czymmek KJ; Mathias RT; Duncan MK
    Int J Biochem Cell Biol; 2014 May; 50():132-45. PubMed ID: 24607497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential expression of N- and B-cadherin during lens development.
    Leong L; Menko AS; Grunwald GB
    Invest Ophthalmol Vis Sci; 2000 Oct; 41(11):3503-10. PubMed ID: 11006245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative histologic study of the fibrillin microfibrillar system in the lens capsule of normal subjects and subjects with Marfan syndrome.
    Mir S; Wheatley HM; Hussels IE; Whittum-Hudson JA; Traboulsi EI
    Invest Ophthalmol Vis Sci; 1998 Jan; 39(1):84-93. PubMed ID: 9430549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knock-in of Cx46 partially rescues fiber defects in lenses lacking Cx50.
    Wang E; Geng A; Seo R; Maniar A; Gong X
    Mol Vis; 2017; 23():160-170. PubMed ID: 28458505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of animal model lens anatomy: accommodative range is related to fiber structure and organization.
    Kuszak JR; Mazurkiewicz M; Jison L; Madurski A; Ngando A; Zoltoski RK
    Vet Ophthalmol; 2006; 9(5):266-80. PubMed ID: 16939454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upregulation of alphavbeta6 integrin, a potent TGF-beta1 activator, and posterior capsule opacification.
    Sponer U; Pieh S; Soleiman A; Skorpik C
    J Cataract Refract Surg; 2005 Mar; 31(3):595-606. PubMed ID: 15811751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The importance of the epithelial fibre cell interface to lens regeneration in an in vivo rat model and in a human bag-in-the-lens (BiL) sample.
    Wu W; Lois N; Prescott AR; Brown AP; Van Gerwen V; Tassignon MJ; Richards SA; Saunter CD; Jarrin M; Quinlan RA
    Exp Eye Res; 2021 Dec; 213():108808. PubMed ID: 34762932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Translocation of macromolecules into whole rat lenses in culture.
    Boyle DL; Carman P; Takemoto L
    Mol Vis; 2002 Jul; 8():226-34. PubMed ID: 12118240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilization and remodeling of the membrane skeleton during lens fiber cell differentiation and maturation.
    Lee A; Fischer RS; Fowler VM
    Dev Dyn; 2000 Mar; 217(3):257-70. PubMed ID: 10741420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EphA2 and Src regulate equatorial cell morphogenesis during lens development.
    Cheng C; Ansari MM; Cooper JA; Gong X
    Development; 2013 Oct; 140(20):4237-45. PubMed ID: 24026120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondria of rat lenses: distribution near and at the sutures.
    Bantseev VL; Herbert KL; Trevithick JR; Sivak JG
    Curr Eye Res; 1999 Dec; 19(6):506-16. PubMed ID: 10550793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lens cell populations studied in human donor capsular bags with implanted intraocular lenses.
    Marcantonio JM; Rakic JM; Vrensen GF; Duncan G
    Invest Ophthalmol Vis Sci; 2000 Apr; 41(5):1130-41. PubMed ID: 10752951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.