These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 18597029)

  • 1. 5-Methyltetrahydrofolate is photosensitive in the presence of riboflavin.
    Steindal AH; Tam TT; Lu XY; Juzeniene A; Moan J
    Photochem Photobiol Sci; 2008 Jul; 7(7):814-8. PubMed ID: 18597029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 5-Methyltetrahydrofolate can be photodegraded by endogenous photosensitizers.
    Juzeniene A; Thu Tam TT; Iani V; Moan J
    Free Radic Biol Med; 2009 Oct; 47(8):1199-204. PubMed ID: 19647791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photodegradation of 5-methyltetrahydrofolate in the presence of Uroporphyrin.
    Tam TT; Juzeniene A; Steindal AH; Iani V; Moan J
    J Photochem Photobiol B; 2009 Mar; 94(3):201-4. PubMed ID: 19138530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of light intensity and wavelengths on photodegradation reactions of riboflavin in aqueous solution.
    Ahmad I; Fasihullah Q; Vaid FH
    J Photochem Photobiol B; 2006 Jan; 82(1):21-7. PubMed ID: 16223586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immediate pigment darkening: its evolutionary roles may include protection against folate photosensitization.
    Moan J; Nielsen KP; Juzeniene A
    FASEB J; 2012 Mar; 26(3):971-5. PubMed ID: 22159146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photodegradation of 5-methyltetrahydrofolate: biophysical aspects.
    Steindal AH; Juzeniene A; Johnsson A; Moan J
    Photochem Photobiol; 2006; 82(6):1651-5. PubMed ID: 16879038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of riboflavin sensitized degradation of purine and pyrimidine derivatives of DNA and RNA under UVA and UVB.
    Joshi PC; Keane TC
    Biochem Biophys Res Commun; 2010 Oct; 400(4):729-33. PubMed ID: 20816939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Riboflavin photodegradation and photosensitizing effects are highly dependent on oxygen and ascorbate concentrations.
    de La Rochette A; Silva E; Birlouez-Aragon I; Mancini M; Edwards AM; Morlière P
    Photochem Photobiol; 2000 Dec; 72(6):815-20. PubMed ID: 11140271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photosensitizing effect of riboflavin, lumiflavin, and lumichrome on the generation of volatiles in soy milk.
    Huang R; Kim HJ; Min DB
    J Agric Food Chem; 2006 Mar; 54(6):2359-64. PubMed ID: 16536619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folic Acid Impairs the Uptake of 5-Methyltetrahydrofolate in Human Umbilical Vascular Endothelial Cells.
    Smith D; Hornstra J; Rocha M; Jansen G; Assaraf Y; Lasry I; Blom H; Smulders YM
    J Cardiovasc Pharmacol; 2017 Oct; 70(4):271-275. PubMed ID: 28991880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vitamin B-sensitized photo-oxidation of dopamine.
    Massad WA; Barbieri Y; Romero M; García NA
    Photochem Photobiol; 2008; 84(5):1201-8. PubMed ID: 18346086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultraviolet radiation-induced photodegradation and 1O2, O2-. production by riboflavin, lumichrome and lumiflavin.
    Joshi PC
    Indian J Biochem Biophys; 1989 Jun; 26(3):186-9. PubMed ID: 2620914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blue light induced free radicals from riboflavin on E. coli DNA damage.
    Liang JY; Yuann JM; Cheng CW; Jian HL; Lin CC; Chen LY
    J Photochem Photobiol B; 2013 Feb; 119():60-4. PubMed ID: 23347966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoinactivation of the bacteriophage PhiX174 by UVA radiation and visible light in SM buffer and DMEM-F12.
    Sommerfeld F; Weyersberg L; Vatter P; Hessling M
    BMC Res Notes; 2024 Jan; 17(1):3. PubMed ID: 38167092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photochemical kinetics of corneal cross-linking with riboflavin.
    Kamaev P; Friedman MD; Sherr E; Muller D
    Invest Ophthalmol Vis Sci; 2012 Apr; 53(4):2360-7. PubMed ID: 22427580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation Between Multimodal Microscopy, Tissue Morphology, and Enzymatic Resistance in Riboflavin-UVA Cross-Linked Human Corneas.
    Laggner M; Pollreisz A; Schmidinger G; Byrne RA; Scheinecker C; Schmidt-Erfurth U; Chen YT
    Invest Ophthalmol Vis Sci; 2015 Jun; 56(6):3584-92. PubMed ID: 26047045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of UVA- and UVA/riboflavin-induced growth inhibition of Acanthamoeba castellanii.
    Makdoumi K; Bäckman A; Mortensen J; Magnuson A; Crafoord S
    Graefes Arch Clin Exp Ophthalmol; 2013 Feb; 251(2):509-14. PubMed ID: 23079692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosensitized DNA damage and its protection via a novel mechanism.
    Hiraku Y; Ito K; Hirakawa K; Kawanishi S
    Photochem Photobiol; 2007; 83(1):205-12. PubMed ID: 16965181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Keratocyte cytotoxicity of riboflavin/UVA-treatment in vitro.
    Wollensak G; Spoerl E; Reber F; Seiler T
    Eye (Lond); 2004 Jul; 18(7):718-22. PubMed ID: 14739922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical evidence of the distribution of cross-links in corneas treated with riboflavin and ultraviolet A light.
    Kohlhaas M; Spoerl E; Schilde T; Unger G; Wittig C; Pillunat LE
    J Cataract Refract Surg; 2006 Feb; 32(2):279-83. PubMed ID: 16565005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.