BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 18597094)

  • 1. Transformation of Kalanchoe blossfeldiana with rol-genes is useful in molecular breeding towards compact growth.
    Christensen B; Sriskandarajah S; Serek M; Müller R
    Plant Cell Rep; 2008 Sep; 27(9):1485-95. PubMed ID: 18597094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kalanchoë blossfeldiana naturally transformed with Rhizobium rhizogenes exhibits superior root phenotype.
    Favero BT; Tan Y; Chen X; Müller R; Lütken H
    Plant Sci; 2022 Aug; 321():111323. PubMed ID: 35696923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of compact plants by overexpression of AtSHI in the ornamental Kalanchoë.
    Lütken H; Jensen LS; Topp SH; Mibus H; Müller R; Rasmussen SK
    Plant Biotechnol J; 2010 Feb; 8(2):211-22. PubMed ID: 20051037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transgenic
    Favero BT; Tan Y; Lin Y; Hansen HB; Shadmani N; Xu J; He J; Müller R; Almeida A; Lütken H
    Front Plant Sci; 2021; 12():672023. PubMed ID: 34025708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compact shoot architecture of Osteospermum fruticosum transformed with Rhizobium rhizogenes.
    Desmet S; Dhooghe E; De Keyser E; Van Huylenbroeck J; Geelen D
    Plant Cell Rep; 2021 Sep; 40(9):1665-1678. PubMed ID: 34052885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of KxhKN4 and KxhKN5 genes in Kalanchoë blossfeldiana 'Molly' results in novel compact plant phenotypes: towards a cisgenesis alternative to growth retardants.
    Lütken H; Laura M; Borghi C; Ørgaard M; Allavena A; Rasmussen SK
    Plant Cell Rep; 2011 Dec; 30(12):2267-79. PubMed ID: 21850596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Induction of polyploid in hairy roots of Nicotiana tabacum and its plant regeneration].
    Hou L; Shi H; Yu W; Tsang PK; Chow CF
    Sheng Wu Gong Cheng Xue Bao; 2014 Apr; 30(4):581-94. PubMed ID: 25195248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient transformation of Kalanchoe blossfeldiana and production of male-sterile plants by engineered anther ablation.
    García-Sogo B; Pineda B; Castelblanque L; Antón T; Medina M; Roque E; Torresi C; Beltrán JP; Moreno V; Cañas LA
    Plant Cell Rep; 2010 Jan; 29(1):61-77. PubMed ID: 19921199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant regeneration from hairy-root cultures transformed by infection with Agrobacterium rhizogenes in Catharanthus roseus.
    Choi PS; Kim YD; Choi KM; Chung HJ; Choi DW; Liu JR
    Plant Cell Rep; 2004 Jun; 22(11):828-31. PubMed ID: 14963692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stable transformation and direct regeneration in Coffea canephora P ex. Fr. by Agrobacterium rhizogenes mediated transformation without hairy-root phenotype.
    Kumar V; Satyanarayana KV; Sarala Itty S; Indu EP; Giridhar P; Chandrashekar A; Ravishankar GA
    Plant Cell Rep; 2006 Mar; 25(3):214-22. PubMed ID: 16331458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a transgenic hairy root system in jute (Corchorus capsularis L.) with gusA reporter gene through Agrobacterium rhizogenes mediated co-transformation.
    Chattopadhyay T; Roy S; Mitra A; Maiti MK
    Plant Cell Rep; 2011 Apr; 30(4):485-93. PubMed ID: 21153028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic transformation of Gentiana macrophylla with Agrobacterium rhizogenes: growth and production of secoiridoid glucoside gentiopicroside in transformed hairy root cultures.
    Tiwari RK; Trivedi M; Guang ZC; Guo GQ; Zheng GC
    Plant Cell Rep; 2007 Feb; 26(2):199-210. PubMed ID: 16972092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Agrobacterium rhizogenes-transformed roots of coffee (Coffea arabica): conditions for long-term proliferation, and morphological and molecular characterization.
    Alpizar E; Dechamp E; Lapeyre-Montes F; Guilhaumon C; Bertrand B; Jourdan C; Lashermes P; Etienne H
    Ann Bot; 2008 May; 101(7):929-40. PubMed ID: 18316320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Hairy root induction and plant regeneration of crownvetch (Coronilla varia L.) transformed by Agrobacterium rhizogenes].
    Han XL; Bu HY; Hao JG; Zhao YW; Jia JF
    Sheng Wu Gong Cheng Xue Bao; 2006 Jan; 22(1):107-13. PubMed ID: 16572849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of hairy root cultures and transgenic plants by Agrobacterium rhizogenes-mediated transformation.
    Christey MC; Braun RH
    Methods Mol Biol; 2005; 286():47-60. PubMed ID: 15310912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manipulation of MKS1 gene expression affects Kalanchoë blossfeldiana and Petunia hybrida phenotypes.
    Gargul JM; Mibus H; Serek M
    Plant Biotechnol J; 2015 Jan; 13(1):51-61. PubMed ID: 25082411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Induction and in vitro culture of hairy roots of Dianthus caryophyllus and its plant regeneration].
    Shi H; Zhu Y; Wang B; Sun J; Huang S
    Sheng Wu Gong Cheng Xue Bao; 2014 Nov; 30(11):1742-50. PubMed ID: 25985525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Production of transgenic sugarbeet plants (Beta vulgaris L.) using Agrobacterium rhizogenes].
    Kishchenko EM; Komarnitskiĭ IK; Kuchuk NV
    Tsitol Genet; 2005; 39(1):9-13. PubMed ID: 16018172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agrobacterium rhizogenes-mediated transformation and regeneration of the Apocynum venetum.
    Jia H; Zhao B; Wang X; Wang Y
    Sheng Wu Gong Cheng Xue Bao; 2008 Oct; 24(10):1723-8. PubMed ID: 19149183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Features of lettuce transgenic plants with ifn-alpha2b gene regenerated after Agrobacterium rhizogenes-mediated transformation].
    Matveeva NA; Shakhovskiĭ AM; Kuchuk NV
    Tsitol Genet; 2012; 46(3):27-32. PubMed ID: 22856143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.