BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 18597118)

  • 1. Growth factor effects on costal chondrocytes for tissue engineering fibrocartilage.
    Johns DE; Athanasiou KA
    Cell Tissue Res; 2008 Sep; 333(3):439-47. PubMed ID: 18597118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of growth factor treatment on fibrochondrocyte and chondrocyte co-cultures for TMJ fibrocartilage engineering.
    Kalpakci KN; Kim EJ; Athanasiou KA
    Acta Biomater; 2011 Apr; 7(4):1710-8. PubMed ID: 21185408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of magnesium ion concentration on the fibrocartilage regeneration potential of goat costal chondrocytes.
    Hagandora CK; Tudares MA; Almarza AJ
    Ann Biomed Eng; 2012 Mar; 40(3):688-96. PubMed ID: 22009314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passaged goat costal chondrocytes provide a feasible cell source for temporomandibular joint tissue engineering.
    Anderson DE; Athanasiou KA
    Ann Biomed Eng; 2008 Dec; 36(12):1992-2001. PubMed ID: 18830818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinically relevant cell sources for TMJ disc engineering.
    Johns DE; Wong ME; Athanasiou KA
    J Dent Res; 2008 Jun; 87(6):548-52. PubMed ID: 18502963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of primary and passaged chondrocytes for use in engineering the temporomandibular joint.
    Anderson DE; Athanasiou KA
    Arch Oral Biol; 2009 Feb; 54(2):138-45. PubMed ID: 19013549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering self-assembled neomenisci through combination of matrix augmentation and directional remodeling.
    Gonzalez-Leon EA; Bielajew BJ; Hu JC; Athanasiou KA
    Acta Biomater; 2020 Jun; 109():73-81. PubMed ID: 32344175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Creating a spectrum of fibrocartilages through different cell sources and biochemical stimuli.
    Hoben GM; Athanasiou KA
    Biotechnol Bioeng; 2008 Jun; 100(3):587-98. PubMed ID: 18078296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A chondroitinase-ABC and TGF-β1 treatment regimen for enhancing the mechanical properties of tissue-engineered fibrocartilage.
    MacBarb RF; Makris EA; Hu JC; Athanasiou KA
    Acta Biomater; 2013 Jan; 9(1):4626-34. PubMed ID: 23041782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering functional anisotropy in fibrocartilage neotissues.
    MacBarb RF; Chen AL; Hu JC; Athanasiou KA
    Biomaterials; 2013 Dec; 34(38):9980-9. PubMed ID: 24075479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic assessment of growth factor treatment on biochemical and biomechanical properties of engineered articular cartilage constructs.
    Elder BD; Athanasiou KA
    Osteoarthritis Cartilage; 2009 Jan; 17(1):114-23. PubMed ID: 18571441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing the mechanical properties of engineered tissue through matrix remodeling via the signaling phospholipid lysophosphatidic acid.
    Hadidi P; Athanasiou KA
    Biochem Biophys Res Commun; 2013 Mar; 433(1):133-8. PubMed ID: 23458458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of different chondrocytes for use in tissue engineering of cartilage model structures.
    Isogai N; Kusuhara H; Ikada Y; Ohtani H; Jacquet R; Hillyer J; Lowder E; Landis WJ
    Tissue Eng; 2006 Apr; 12(4):691-703. PubMed ID: 16674284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expansion of human articular chondrocytes and formation of tissue-engineered cartilage: a step towards exploring a potential use of matrix-induced cell therapy.
    Munirah S; Samsudin OC; Aminuddin BS; Ruszymah BH
    Tissue Cell; 2010 Oct; 42(5):282-92. PubMed ID: 20810142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cartilage-characteristic matrix reconstruction by sequential addition of soluble factors during expansion of human articular chondrocytes and their cultivation in collagen sponges.
    Claus S; Mayer N; Aubert-Foucher E; Chajra H; Perrier-Groult E; Lafont J; Piperno M; Damour O; Mallein-Gerin F
    Tissue Eng Part C Methods; 2012 Feb; 18(2):104-12. PubMed ID: 21933021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of passage number and post-expansion aggregate culture on tissue engineered, self-assembled neocartilage.
    Huang BJ; Hu JC; Athanasiou KA
    Acta Biomater; 2016 Oct; 43():150-159. PubMed ID: 27475530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical seeding density improves the properties and translatability of self-assembling anatomically shaped knee menisci.
    Hadidi P; Yeh TC; Hu JC; Athanasiou KA
    Acta Biomater; 2015 Jan; 11():173-82. PubMed ID: 25234157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of growth factor treatment on meniscal chondrocyte proliferation and differentiation on polyglycolic acid scaffolds.
    Stewart K; Pabbruwe M; Dickinson S; Sims T; Hollander AP; Chaudhuri JB
    Tissue Eng; 2007 Feb; 13(2):271-80. PubMed ID: 17504061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maturational growth of self-assembled, functional menisci as a result of TGF-β1 and enzymatic chondroitinase-ABC stimulation.
    Huey DJ; Athanasiou KA
    Biomaterials; 2011 Mar; 32(8):2052-8. PubMed ID: 21145584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of in vitro preculture on in vivo development of human engineered cartilage in an ectopic model.
    Moretti M; Wendt D; Dickinson SC; Sims TJ; Hollander AP; Kelly DJ; Prendergast PJ; Heberer M; Martin I
    Tissue Eng; 2005; 11(9-10):1421-8. PubMed ID: 16259597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.