These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 18597262)

  • 1. Modeling of immobilized cell reactor for propionic acid fermentation.
    Crespo JP; Almeida JS; Moura MJ; Carrondo MJ
    Biotechnol Bioeng; 1990 Oct; 36(7):705-16. PubMed ID: 18597262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An immobilized cell reactor with simultaneous product separation. I. Reactor design and analysis.
    Dale MC; Okos MR; Wankat PC
    Biotechnol Bioeng; 1985 Jul; 27(7):932-42. PubMed ID: 18553762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid residence time distributions in immobilized cell bioreactors.
    Swaine DE; Daugulis AJ
    Biotechnol Bioeng; 1989 Jan; 33(5):604-12. PubMed ID: 18587958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae.
    Najafpour G; Younesi H; Syahidah Ku Ismail K
    Bioresour Technol; 2004 May; 92(3):251-60. PubMed ID: 14766158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic modeling of immobilized cell reactor: application to ethanol fermentation.
    Nakasaki K; Murai T; Akiyama T
    Biotechnol Bioeng; 1989 Apr; 33(10):1317-23. PubMed ID: 18587866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on immobilized Saccharomyces cerevisiae. II. Effect of temperature distribution on continuous rapid ethanol formation in molasses fermentation.
    Ghose TK; Bandyopadhyay KK
    Biotechnol Bioeng; 1982 Apr; 24(4):797-804. PubMed ID: 18546371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical modelization of a packed-bed reactor performance with immobilized yeast for ethanol fermentation.
    Gòdia F; Casas C; Solà C
    Biotechnol Bioeng; 1987 Nov; 30(7):836-43. PubMed ID: 18581518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An immobilized cell reactor with simultaneous product separation. II. Experimental reactor performance.
    Dale MC; Okos MR; Wankat PC
    Biotechnol Bioeng; 1985 Jul; 27(7):943-52. PubMed ID: 18553763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structured modeling of a microbial system: II. Experimental verification of a structured lactic acid fermentation model.
    Nielsen J; Nikolajsen K; Villadsen J
    Biotechnol Bioeng; 1991 Jun; 38(1):11-23. PubMed ID: 18600693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematical modeling of diffusion and reaction in the hydrolysis of vegetable protein in an immobilized enzyme recycle reactor.
    Adu-Amankwa B; Constantinides A
    Biotechnol Bioeng; 1984 Feb; 26(2):156-66. PubMed ID: 18551702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mathematical model for a hybrid anaerobic reactor.
    Saravanan V; Sreekrishnan TR
    J Environ Manage; 2008 Jul; 88(1):136-46. PubMed ID: 17368918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of geometrical and operational parameters on the axial dispersion in an aerated channel reactor.
    Potier O; Leclerc JP; Pons MN
    Water Res; 2005 Nov; 39(18):4454-62. PubMed ID: 16219333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth model and metabolic activity of brewing yeast biofilm on the surface of spent grains: a biocatalyst for continuous beer fermentation.
    Brányik T; Vicente AA; Kuncová G; Podrazký O; Dostálek P; Teixeira JA
    Biotechnol Prog; 2004; 20(6):1733-40. PubMed ID: 15575706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of growth and coupled nitrification/denitrification by immobilized Thiosphaera pantotropha using measurement and modeling of oxygen profiles.
    Hooijmans CM; Geraats SG; van Neil EW; Robertson LA; Heijnen JJ; Luyben KC
    Biotechnol Bioeng; 1990 Nov; 36(9):931-9. PubMed ID: 18597293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reaction and diffusion in a gel membrane reactor containing immobilized cells.
    De Backer L; Devleminck S; Willaert R; Baron G
    Biotechnol Bioeng; 1992 Jun; 40(2):322-8. PubMed ID: 18601119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sucrose conversion by immobilized invertase in a multiple air-lift loop bioreactor.
    Bakker WA; Knitel JT; Tramper J; de Gooijer CD
    Biotechnol Prog; 1994; 10(3):277-83. PubMed ID: 7764935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrolysis of butteroil by immobilized lipase using a hollow-fiber reactor: part III. Multiresponse kinetic studies.
    Malcata FX; Hill CG; Amundson CH
    Biotechnol Bioeng; 1992 Apr; 39(10):1002-12. PubMed ID: 18600899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorptive control of water in esterification with immobilized enzymes. Continuous operation in a periodic counter-current reactor.
    Mensah P; Carta G
    Biotechnol Bioeng; 1999; 66(3):137-46. PubMed ID: 10577467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of fed-batch fermentation and pH profiles on nisin production in suspended-cell and biofilm reactors.
    Pongtharangkul T; Demirci A
    Appl Microbiol Biotechnol; 2006 Nov; 73(1):73-9. PubMed ID: 16733734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.