These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 18597336)

  • 1. Oxygen uptake by entrapped hybridoma cells.
    Wohlpart D; Gainer J; Kirwan D
    Biotechnol Bioeng; 1991 May; 37(11):1050-3. PubMed ID: 18597336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell Culture conditions determine the enhancement of specific monoclonal antibody productivity of calcium alginate-entrapped S3H5/gamma2bA2 hybridoma cells.
    Lee GM; Chuck AS; Palsson BO
    Biotechnol Bioeng; 1993 Feb; 41(3):330-40. PubMed ID: 18609557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport limitation of chlorine disinfection of Pseudomonas aeruginosa entrapped in alginate beads.
    Xu X; Stewart PS; Chen X
    Biotechnol Bioeng; 1996 Jan; 49(1):93-100. PubMed ID: 18623558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability of antibody productivity is improved when hybridoma cells are entrapped in calcium alginate beads.
    Lee GM; Palsson BO
    Biotechnol Bioeng; 1993 Nov; 42(9):1131-5. PubMed ID: 18613244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybridoma perfusion systems: a comparison study.
    de la Broise D; Noiseux M; Massie B; Lemieux R
    Biotechnol Bioeng; 1992 Jun; 40(1):25-32. PubMed ID: 18601040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybridoma growth and antibody production as a function of cell density and specific growth rate in perfusion culture.
    Banik GG; Heath CA
    Biotechnol Bioeng; 1995 Nov; 48(3):289-300. PubMed ID: 18623488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of oxygen limitations on monoclonal antibody production by immobilized hybridoma cells.
    Riley MR; Muzzio FJ; Reyes SC
    Biotechnol Prog; 1997; 13(3):301-10. PubMed ID: 9190081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative study of production of dextransucrase and dextran by cells of Leuconostoc mesenteroides immobilized on Celite and in calcium alginate beads.
    El-Sayed AH; Mahmoud WM; Coughlin RW
    Biotechnol Bioeng; 1990 Jun; 36(1):83-91. PubMed ID: 18592612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen supply to immobilized cells: 5. Theoretical calculations and experimental data for the oxidation of glycerol by immobilized Gluconobacter oxydans cells with oxygen or p-benzoquinone as electron acceptor.
    Adlercreutz P
    Biotechnol Bioeng; 1986 Feb; 28(2):223-32. PubMed ID: 18555319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of dextransucrase by Leuconostoc mesenteroides immobilized in calcium-alginate beads: I. Batch and fed-batch fermentations.
    El-Sayed AH; Mahmoud WM; Coughlin RW
    Biotechnol Bioeng; 1990 Aug; 36(4):338-45. PubMed ID: 18595087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological responses of hybridoma cells in a protein-free medium to soluble and immobilized antigen.
    Dandulakis G; Herr JC; Kirwan DJ
    Biotechnol Bioeng; 1994 Nov; 44(9):1155-9. PubMed ID: 18623033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Further kinetic characterization of alginate-entrapped cells of Mucuna pruriens L.
    Pras N; Hesselink PG; Guikema WM; Malingré TM
    Biotechnol Bioeng; 1989 May; 33(11):1461-8. PubMed ID: 18587886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real and pseudo oxygen gradients in Ca-alginate beads monitored during polarographic Po2-measurements using Pt-needle microelectrodes.
    Müller W; Winnefeld A; Kohls O; Scheper T; Zimelka W; Baumgärtl H
    Biotechnol Bioeng; 1994 Aug; 44(5):617-25. PubMed ID: 18618797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic aspects of the bioconversion of L-tyrosine into L-DOPA by cells of Mucuna pruriensL. Entrapped in different matrices.
    Pras N; Hesselink PG; ten Tusscher J; Malingré TM
    Biotechnol Bioeng; 1989 Jun; 34(2):214-22. PubMed ID: 18588095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growing Saccharomyces cerevisiae in calcium-alginate beads induces cell alterations which accelerate glucose conversion to ethanol.
    Galazzo JL; Bailey JE
    Biotechnol Bioeng; 1990 Aug; 36(4):417-26. PubMed ID: 18595096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen photoproduction by nutrient-deprived Chlamydomonas reinhardtii cells immobilized within thin alginate films under aerobic and anaerobic conditions.
    Kosourov SN; Seibert M
    Biotechnol Bioeng; 2009 Jan; 102(1):50-8. PubMed ID: 18823051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced shikonin production from Lithospermum erythrorhizon by in situ extraction and calcium alginate immobilization.
    Kim DJ; Chang HN
    Biotechnol Bioeng; 1990 Aug; 36(5):460-6. PubMed ID: 18595102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Confining mycelial growth to porous microbeads: a novel technique to alter the morphology of non-newtonian mycelial cultures.
    Gbewonyo K; Wang DI
    Biotechnol Bioeng; 1983 Apr; 25(4):967-83. PubMed ID: 18548712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic studies on hybridoma cells immobilized in fixed bed reactors.
    Pörtner R; Rössing S; Koop M; Lüdemann I
    Biotechnol Bioeng; 1997 Aug; 55(3):535-41. PubMed ID: 18636520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen diffusivity in gel beads containing viable cells.
    Kurosawa H; Matsumura M; Tanaka H
    Biotechnol Bioeng; 1989 Oct; 34(7):926-32. PubMed ID: 18588184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.