These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1054 related articles for article (PubMed ID: 18597449)
41. Resin-bound models of the [FeFe]-hydrogenase enzyme active site and studies of their reactivity. Green KN; Hess JL; Thomas CM; Darensbourg MY Dalton Trans; 2009 Jun; (22):4344-50. PubMed ID: 19662312 [TBL] [Abstract][Full Text] [Related]
42. Facilitated hydride binding in an Fe-Fe hydrogenase active-site biomimic revealed by X-ray absorption spectroscopy and DFT calculations. Löscher S; Schwartz L; Stein M; Ott S; Haumann M Inorg Chem; 2007 Dec; 46(26):11094-105. PubMed ID: 18041829 [TBL] [Abstract][Full Text] [Related]
43. Electronic structure of an [FeFe] hydrogenase model complex in solution revealed by X-ray absorption spectroscopy using narrow-band emission detection. Leidel N; Chernev P; Havelius KG; Schwartz L; Ott S; Haumann M J Am Chem Soc; 2012 Aug; 134(34):14142-57. PubMed ID: 22860512 [TBL] [Abstract][Full Text] [Related]
44. Dinuclear iron(II)-cyanocarbonyl complexes linked by two/three bridging ethylthiolates: relevance to the active site of [Fe] hydrogenases. Liaw WF; Tsai WT; Gau HB; Lee CM; Chou SY; Chen WY; Lee GH Inorg Chem; 2003 Apr; 42(8):2783-8. PubMed ID: 12691589 [TBL] [Abstract][Full Text] [Related]
45. Active-site models for iron hydrogenases: reduction chemistry of dinuclear iron complexes. Aguirre de Carcer I; DiPasquale A; Rheingold AL; Heinekey DM Inorg Chem; 2006 Oct; 45(20):8000-2. PubMed ID: 16999394 [TBL] [Abstract][Full Text] [Related]
46. Influence of the redox active ligand on the reactivity and electronic structure of a series of Fe(TIM) complexes. Hess CR; Weyhermüller T; Bill E; Wieghardt K Inorg Chem; 2010 Jun; 49(12):5686-700. PubMed ID: 20426397 [TBL] [Abstract][Full Text] [Related]
47. Diiron dithiolate complexes containing intra-ligand NH ... S hydrogen bonds: [FeFe] hydrogenase active site models for the electrochemical proton reduction of HOAc with low overpotential. Yu Z; Wang M; Li P; Dong W; Wang F; Sun L Dalton Trans; 2008 May; (18):2400-6. PubMed ID: 18461194 [TBL] [Abstract][Full Text] [Related]
49. A new cumulene diiron complex related to the active site of Fe-only hydrogenases and its phosphine substituted derivatives: synthesis, electrochemistry and structural characterization. Wen N; Xu F; Feng Y; Du S J Inorg Biochem; 2011 Sep; 105(9):1123-30. PubMed ID: 21704584 [TBL] [Abstract][Full Text] [Related]
50. Time-resolved vibrational spectroscopy of [FeFe]-hydrogenase model compounds. Bingaman JL; Kohnhorst CL; Van Meter GA; McElroy BA; Rakowski EA; Caplins BW; Gutowski TA; Stromberg CJ; Webster CE; Heilweil EJ J Phys Chem A; 2012 Jul; 116(27):7261-71. PubMed ID: 22612846 [TBL] [Abstract][Full Text] [Related]
51. Electronic and geometric effects of phosphatriazaadamantane ligands on the catalytic activity of an [FeFe] hydrogenase inspired complex. Vannucci AK; Wang S; Nichol GS; Lichtenberger DL; Evans DH; Glass RS Dalton Trans; 2010 Mar; 39(12):3050-6. PubMed ID: 20221539 [TBL] [Abstract][Full Text] [Related]
52. Efficient [FeFe] hydrogenase mimic dyads covalently linking to iridium photosensitizer for photocatalytic hydrogen evolution. Cui HH; Hu MQ; Wen HM; Chai GL; Ma CB; Chen H; Chen CN Dalton Trans; 2012 Dec; 41(45):13899-907. PubMed ID: 23023604 [TBL] [Abstract][Full Text] [Related]
53. IR spectroelectrochemical study of the binding of carbon monoxide to the active site of Desulfovibrio fructosovorans Ni-Fe hydrogenase. De Lacey AL; Stadler C; Fernandez VM; Hatchikian EC; Fan HJ; Li S; Hall MB J Biol Inorg Chem; 2002 Mar; 7(3):318-26. PubMed ID: 11935356 [TBL] [Abstract][Full Text] [Related]
54. Mechanism of H2 production by the [FeFe]H subcluster of di-iron hydrogenases: implications for abiotic catalysts. Sbraccia C; Zipoli F; Car R; Cohen MH; Dismukes GC; Selloni A J Phys Chem B; 2008 Oct; 112(42):13381-90. PubMed ID: 18826265 [TBL] [Abstract][Full Text] [Related]
55. Structural and electronic properties of the [FeFe] hydrogenase H-cluster in different redox and protonation states. A DFT investigation. Bruschi M; Greco C; Fantucci P; De Gioia L Inorg Chem; 2008 Jul; 47(13):6056-71. PubMed ID: 18540595 [TBL] [Abstract][Full Text] [Related]
56. Observation of redox-induced electron transfer and spin crossover for dinuclear cobalt and iron complexes with the 2,5-di-tert-butyl-3,6-dihydroxy-1,4-benzoquinonate bridging ligand. Min KS; Dipasquale AG; Rheingold AL; White HS; Miller JS J Am Chem Soc; 2009 May; 131(17):6229-36. PubMed ID: 19358538 [TBL] [Abstract][Full Text] [Related]
57. Bridging-hydride influence on the electronic structure of an [FeFe] hydrogenase active-site model complex revealed by XAES-DFT. Leidel N; Hsieh CH; Chernev P; Sigfridsson KG; Darensbourg MY; Haumann M Dalton Trans; 2013 Jun; 42(21):7539-54. PubMed ID: 23446996 [TBL] [Abstract][Full Text] [Related]
58. Dithiolato-bridged dinuclear iron-nickel complexes [Fe(CO)2(CN)2(mu-SCH2CH2CH2S)Ni(S2CNR2)]- modeling the active site of [NiFe] hydrogenase. Li Z; Ohki Y; Tatsumi K J Am Chem Soc; 2005 Jun; 127(25):8950-1. PubMed ID: 15969562 [TBL] [Abstract][Full Text] [Related]
59. The structure of the active site H-cluster of [FeFe] hydrogenase from the green alga Chlamydomonas reinhardtii studied by X-ray absorption spectroscopy. Stripp S; Sanganas O; Happe T; Haumann M Biochemistry; 2009 Jun; 48(22):5042-9. PubMed ID: 19397274 [TBL] [Abstract][Full Text] [Related]
60. On the structure of a proposed mixed-valent analogue of the diiron subsite of [FeFe]-hydrogenase. Best SP; Borg SJ; White JM; Razavet M; Pickett CJ Chem Commun (Camb); 2007 Nov; (42):4348-50. PubMed ID: 17957282 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]