These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1054 related articles for article (PubMed ID: 18597449)
61. Computational studies of the H-cluster of Fe-only hydrogenases: geometric, electronic, and magnetic properties and their dependence on the [Fe4S4] cubane. Fiedler AT; Brunold TC Inorg Chem; 2005 Dec; 44(25):9322-34. PubMed ID: 16323916 [TBL] [Abstract][Full Text] [Related]
62. Catalysis of H(2)/D(2) scrambling and other H/D exchange processes by [Fe]-hydrogenase model complexes. Zhao X; Georgakaki IP; Miller ML; Mejia-Rodriguez R; Chiang CY; Darensbourg MY Inorg Chem; 2002 Jul; 41(15):3917-28. PubMed ID: 12132916 [TBL] [Abstract][Full Text] [Related]
63. Influence of an electron-deficient bridging o-carborane on the electronic properties of an [FeFe] hydrogenase active site model. Schwartz L; Eriksson L; Lomoth R; Teixidor F; Viñas C; Ott S Dalton Trans; 2008 May; (18):2379-81. PubMed ID: 18461189 [TBL] [Abstract][Full Text] [Related]
64. Vibrational analysis of the model complex (mu-edt)[Fe(CO)(3)](2) and comparison to iron-only hydrogenase: the activation scale of hydrogenase model systems. Galinato MG; Whaley CM; Lehnert N Inorg Chem; 2010 Apr; 49(7):3201-15. PubMed ID: 20225804 [TBL] [Abstract][Full Text] [Related]
65. DFT dissection of the reduction step in H2 catalytic production by [FeFe]-hydrogenase-inspired models: can the bridging hydride become more reactive than the terminal isomer? Filippi G; Arrigoni F; Bertini L; De Gioia L; Zampella G Inorg Chem; 2015 Oct; 54(19):9529-42. PubMed ID: 26359661 [TBL] [Abstract][Full Text] [Related]
66. Di/mono-nuclear iron(I)/(II) complexes as functional models for the 2Fe2S subunit and distal Fe moiety of the active site of [FeFe] hydrogenases: protonations, molecular structures and electrochemical properties. Gao S; Fan J; Sun S; Song F; Peng X; Duan Q; Jiang D; Liang Q Dalton Trans; 2012 Oct; 41(39):12064-74. PubMed ID: 22911248 [TBL] [Abstract][Full Text] [Related]
67. Effect of Lewis acid on the structure of a diiron dithiolate complex based on the active site of [FeFe]-hydrogenase assessed by density functional theory. Lee JW; Jo WH Dalton Trans; 2009 Oct; (40):8532-7. PubMed ID: 19809728 [TBL] [Abstract][Full Text] [Related]
69. Probing the effects of one-electron reduction and protonation on the electronic properties of the Fe-S clusters in the active-ready form of [FeFe]-hydrogenases. A QM/MM investigation. Greco C; Bruschi M; Fantucci P; Ryde U; De Gioia L Chemphyschem; 2011 Dec; 12(17):3376-82. PubMed ID: 22084023 [TBL] [Abstract][Full Text] [Related]
70. Investigation of amino acid containing [FeFe] hydrogenase models concerning pendant base effects. Apfel UP; Kowol CR; Halpin Y; Kloss F; Kübel J; Görls H; Vos JG; Keppler BK; Morera E; Lucente G; Weigand W J Inorg Biochem; 2009 Sep; 103(9):1236-44. PubMed ID: 19664823 [TBL] [Abstract][Full Text] [Related]
71. Mixed-valence [Fe(I)Fe(II)] hydrogenase active site model complexes stabilized by a bidentate carborane bis-phosphine ligand. Karnahl M; Tschierlei S; Erdem ÖF; Pullen S; Santoni MP; Reijerse EJ; Lubitz W; Ott S Dalton Trans; 2012 Oct; 41(40):12468-77. PubMed ID: 22955116 [TBL] [Abstract][Full Text] [Related]
72. Resolving the CO/CN ligand arrangement in CO-inactivated [FeFe] hydrogenase by first principles density functional theory calculations. Zilberman S; Stiefel EI; Cohen MH; Car R Inorg Chem; 2006 Jul; 45(15):5715-7. PubMed ID: 16841968 [TBL] [Abstract][Full Text] [Related]
73. Structure and vibrational dynamics of model compounds of the [FeFe]-hydrogenase enzyme system via ultrafast two-dimensional infrared spectroscopy. Stewart AI; Clark IP; Towrie M; Ibrahim SK; Parker AW; Pickett CJ; Hunt NT J Phys Chem B; 2008 Aug; 112(32):10023-32. PubMed ID: 18646798 [TBL] [Abstract][Full Text] [Related]
74. Steps along the path to dihydrogen activation at [FeFe] hydrogenase structural models: dependence of the core geometry on electrocatalytic proton reduction. Cheah MH; Borg SJ; Best SP Inorg Chem; 2007 Mar; 46(5):1741-50. PubMed ID: 17256930 [TBL] [Abstract][Full Text] [Related]
75. Density functional theory investigation of the active site of [Fe]-hydrogenases: effects of redox state and ligand characteristics on structural, electronic, and reactivity properties of complexes related to the [2Fe]H subcluster. Bruschi M; Fantucci P; De Gioia L Inorg Chem; 2003 Jul; 42(15):4773-81. PubMed ID: 12870970 [TBL] [Abstract][Full Text] [Related]
76. Effect of cyanide ligands on the electronic structure of [FeFe] hydrogenase active-site model complexes with an azadithiolate cofactor. Erdem Ö; Stein M; Kaur-Ghumaan S; Reijerse EJ; Ott S; Lubitz W Chemistry; 2013 Oct; 19(43):14566-72. PubMed ID: 24038239 [TBL] [Abstract][Full Text] [Related]
77. Model of the iron hydrogenase active site covalently linked to a ruthenium photosensitizer: synthesis and photophysical properties. Ott S; Borgström M; Kritikos M; Lomoth R; Bergquist J; Akermark B; Hammarström L; Sun L Inorg Chem; 2004 Jul; 43(15):4683-92. PubMed ID: 15257597 [TBL] [Abstract][Full Text] [Related]
78. Time resolved infrared spectroscopy: kinetic studies of weakly binding ligands in an iron-iron hydrogenase model compound. Muhammad S; Moncho S; Brothers EN; Darensbourg MY; Darensbourg DJ; Bengali AA Inorg Chem; 2012 Jul; 51(13):7362-9. PubMed ID: 22680284 [TBL] [Abstract][Full Text] [Related]
79. Quantum refinement of [FeFe] hydrogenase indicates a dithiomethylamine ligand. Ryde U; Greco C; De Gioia L J Am Chem Soc; 2010 Apr; 132(13):4512-3. PubMed ID: 20230002 [TBL] [Abstract][Full Text] [Related]
80. Theoretical studies on the redox potentials of Fe dinuclear complexes as models for hydrogenase. Roy LE; Batista ER; Hay PJ Inorg Chem; 2008 Oct; 47(20):9228-37. PubMed ID: 18811143 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]