These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 18597466)

  • 1. Argentophilicity-dependent colossal thermal expansion in extended prussian blue analogues.
    Goodwin AL; Keen DA; Tucker MG; Dove MT; Peters L; Evans JS
    J Am Chem Soc; 2008 Jul; 130(30):9660-1. PubMed ID: 18597466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of metallophilicity on "colossal" positive and negative thermal expansion in a series of isostructural dicyanometallate coordination polymers.
    Korcok JL; Katz MJ; Leznoff DB
    J Am Chem Soc; 2009 Apr; 131(13):4866-71. PubMed ID: 19290631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colossal positive and negative thermal expansion in the framework material Ag3[Co(CN)6].
    Goodwin AL; Calleja M; Conterio MJ; Dove MT; Evans JS; Keen DA; Peters L; Tucker MG
    Science; 2008 Feb; 319(5864):794-7. PubMed ID: 18258911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compositional dependence of negative thermal expansion in the Prussian Blue analogues M(II)Pt(IV)(CN)6 (M = Mn, Fe, Co, Ni, Cu, Zn, Cd).
    Chapman KW; Chupas PJ; Kepert CJ
    J Am Chem Soc; 2006 May; 128(21):7009-14. PubMed ID: 16719481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guest-dependent negative thermal expansion in nanoporous prussian blue analogues M(II)Pt(IV)(CN)6.x{H2O} (0 < or = x < or = 2; M = Zn, Cd).
    Goodwin AL; Chapman KW; Kepert CJ
    J Am Chem Soc; 2005 Dec; 127(51):17980-1. PubMed ID: 16366530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal expansion matching via framework flexibility in zinc dicyanometallates.
    Goodwin AL; Kennedy BJ; Kepert CJ
    J Am Chem Soc; 2009 May; 131(18):6334-5. PubMed ID: 19385622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zero thermal expansion in a Prussian Blue analogue.
    Margadonna S; Prassides K; Fitch AN
    J Am Chem Soc; 2004 Dec; 126(47):15390-1. PubMed ID: 15563160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Giant negative thermal expansion in magnetic nanocrystals.
    Zheng XG; Kubozono H; Yamada H; Kato K; Ishiwata Y; Xu CN
    Nat Nanotechnol; 2008 Dec; 3(12):724-6. PubMed ID: 19057591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An X-ray diffraction and MAS NMR study of the thermal expansion properties of calcined siliceous ferrierite.
    Bull I; Lightfoot P; Villaescusa LA; Bull LM; Gover RK; Evans JS; Morris RE
    J Am Chem Soc; 2003 Apr; 125(14):4342-9. PubMed ID: 12670258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phonons and colossal thermal expansion behavior of Ag3Co(CN)6 and Ag3Fe(CN)6.
    Mittal R; Zbiri M; Schober H; Achary SN; Tyagi AK; Chaplot SL
    J Phys Condens Matter; 2012 Dec; 24(50):505404. PubMed ID: 23174851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zero thermal expansion in a flexible, stable framework: tetramethylammonium copper(I) zinc(II) cyanide.
    Phillips AE; Halder GJ; Chapman KW; Goodwin AL; Kepert CJ
    J Am Chem Soc; 2010 Jan; 132(1):10-1. PubMed ID: 20014833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Argentophilic interactions.
    Schmidbaur H; Schier A
    Angew Chem Int Ed Engl; 2015 Jan; 54(3):746-84. PubMed ID: 25393553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Switching Between Giant Positive and Negative Thermal Expansions of a YFe(CN)
    Gao Q; Chen J; Sun Q; Chang D; Huang Q; Wu H; Sanson A; Milazzo R; Zhu H; Li Q; Liu Z; Deng J; Xing X
    Angew Chem Int Ed Engl; 2017 Jul; 56(31):9023-9028. PubMed ID: 28594118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and thermal expansion of the distorted Prussian blue analogue RbCuCo(CN)
    Boström HLB; Smith RI
    Chem Commun (Camb); 2019 Aug; 55(69):10230-10233. PubMed ID: 31380536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-Frequency Phonon Driven Negative Thermal Expansion in Cubic GaFe(CN)
    Gao Q; Shi N; Sun Q; Sanson A; Milazzo R; Carnera A; Zhu H; Lapidus SH; Ren Y; Huang Q; Chen J; Xing X
    Inorg Chem; 2018 Sep; 57(17):10918-10924. PubMed ID: 30106577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pressure and temperature effects on metal-to-metal charge transfer in cyano-bridged CoIII-FeII complexes.
    Macpherson BP; Alzoubi BM; Bernhardt PV; Martínez M; Tregloan PA; van Eldik R
    Dalton Trans; 2005 Apr; (8):1459-67. PubMed ID: 15824784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Negative thermal expansion in cubic FeFe(CN)
    Shi N; Gao Q; Sanson A; Li Q; Fan L; Ren Y; Olivi L; Chen J; Xing X
    Dalton Trans; 2019 Mar; 48(11):3658-3663. PubMed ID: 30762851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal Expansion Behavior of M
    Ovens JS; Leznoff DB
    Inorg Chem; 2017 Jul; 56(13):7332-7343. PubMed ID: 28375003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational design of materials with extreme negative compressibility: selective soft-mode frustration in KMn[Ag(CN)2]3.
    Cairns AB; Thompson AL; Tucker MG; Haines J; Goodwin AL
    J Am Chem Soc; 2012 Mar; 134(10):4454-6. PubMed ID: 21776962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dehydration of the nanoporous coordination framework ErIII[CoIII(CN)6].4(H2O): single crystal to single crystal transformation and negative thermal expansion in ErIII[CoIII(CN)6].
    Pretsch T; Chapman KW; Halder GJ; Kepert CJ
    Chem Commun (Camb); 2006 May; (17):1857-9. PubMed ID: 16622507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.