BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 18597495)

  • 1. Serum albumin is as efficient as paraxonase in the detoxication of paraoxon at toxicologically relevant concentrations.
    Sogorb MA; García-Argüelles S; Carrera V; Vilanova E
    Chem Res Toxicol; 2008 Aug; 21(8):1524-9. PubMed ID: 18597495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Relationship between PON1 phenotype and PON1-192 genotype in detoxification of three oxons by human liver.
    Mutch E; Daly AK; Williams FM
    Drug Metab Dispos; 2007 Feb; 35(2):315-20. PubMed ID: 17132760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The PON1 gene and detoxication.
    Furlong CE; Li WF; Brophy VH; Jarvik GP; Richter RJ; Shih DM; Lusis AJ; Costa LG
    Neurotoxicology; 2000 Aug; 21(4):581-7. PubMed ID: 11022865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Serum albumins and detoxication of anti-cholinesterase agents.
    Sogorb MA; Vilanova E
    Chem Biol Interact; 2010 Sep; 187(1-3):325-9. PubMed ID: 20211614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Serum paraoxonase status: a major factor in determining resistance to organophosphates.
    Li WF; Costa LG; Furlong CE
    J Toxicol Environ Health; 1993; 40(2-3):337-46. PubMed ID: 7693961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EDTA-resistant and sensitive phosphotriesterase activities associated with albumin and lipoproteins in rabbit serum.
    Sogorb MA; Sánchez I; López-Rivadulla M; Céspedes V; Vilanova E
    Drug Metab Dispos; 1999 Jan; 27(1):53-9. PubMed ID: 9884309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification of two rat hepatic proteins with A-esterase activity toward chlorpyrifos-oxon and paraoxon.
    Pond AL; Chambers HW; Coyne CP; Chambers JE
    J Pharmacol Exp Ther; 1998 Sep; 286(3):1404-11. PubMed ID: 9732404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic efficiency determines the in-vivo efficacy of PON1 for detoxifying organophosphorus compounds.
    Li WF; Costa LG; Richter RJ; Hagen T; Shih DM; Tward A; Lusis AJ; Furlong CE
    Pharmacogenetics; 2000 Dec; 10(9):767-79. PubMed ID: 11191881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative hydrolysis of O-hexyl O-2,5-dichlorophenyl phosphoramidate and paraoxon in different tissues of vertebrates.
    Monroy-Noyola A; Rojas P; Vilanova E; Sogorb MA
    Arch Toxicol; 2007 Oct; 81(10):689-95. PubMed ID: 17396245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Serum paraoxonase and its influence on paraoxon and chlorpyrifos-oxon toxicity in rats.
    Costa LG; McDonald BE; Murphy SD; Omenn GS; Richter RJ; Motulsky AG; Furlong CE
    Toxicol Appl Pharmacol; 1990 Mar; 103(1):66-76. PubMed ID: 1690462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concentration-dependent binding of chlorpyrifos oxon to acetylcholinesterase.
    Sultatos LG
    Toxicol Sci; 2007 Nov; 100(1):128-35. PubMed ID: 17702992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetically determined susceptibility to organophosphorus insecticides and nerve agents: developing a mouse model for the human PON1 polymorphism.
    Furlong CE; Li WF; Costa LG; Richter RJ; Shih DM; Lusis AJ
    Neurotoxicology; 1998; 19(4-5):645-50. PubMed ID: 9745924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hepatic microsomal detoxification of the organophosphates paraoxon and chlorpyrifos oxon in the mouse.
    Sultatos LG; Murphy SD
    Drug Metab Dispos; 1983; 11(3):232-8. PubMed ID: 6191937
    [No Abstract]   [Full Text] [Related]  

  • 14. The effect of the human serum paraoxonase polymorphism is reversed with diazoxon, soman and sarin.
    Davies HG; Richter RJ; Keifer M; Broomfield CA; Sowalla J; Furlong CE
    Nat Genet; 1996 Nov; 14(3):334-6. PubMed ID: 8896566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gastrointestinal nematode infection increases organophosphate toxicity in rats.
    Farid AS; Horii Y
    Toxicol Lett; 2008 Jul; 180(1):33-7. PubMed ID: 18577432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic analysis of the in vitro inhibition, aging, and reactivation of brain acetylcholinesterase from rat and channel catfish by paraoxon and chlorpyrifos-oxon.
    Carr RL; Chambers JE
    Toxicol Appl Pharmacol; 1996 Aug; 139(2):365-73. PubMed ID: 8806854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of genetic polymorphism of human plasma paraoxonase/arylesterase in hydrolysis of the insecticide metabolites chlorpyrifos oxon and paraoxon.
    Furlong CE; Richter RJ; Seidel SL; Motulsky AG
    Am J Hum Genet; 1988 Sep; 43(3):230-8. PubMed ID: 2458038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of chlorpyrifos-oxon and paraoxon acetylcholinesterase inhibition dynamics: potential role of a peripheral binding site.
    Kousba AA; Sultatos LG; Poet TS; Timchalk C
    Toxicol Sci; 2004 Aug; 80(2):239-48. PubMed ID: 15141101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis.
    Shih DM; Gu L; Xia YR; Navab M; Li WF; Hama S; Castellani LW; Furlong CE; Costa LG; Fogelman AM; Lusis AJ
    Nature; 1998 Jul; 394(6690):284-7. PubMed ID: 9685159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concentration-dependent interactions of the organophosphates chlorpyrifos oxon and methyl paraoxon with human recombinant acetylcholinesterase.
    Kaushik R; Rosenfeld CA; Sultatos LG
    Toxicol Appl Pharmacol; 2007 Jun; 221(2):243-50. PubMed ID: 17467020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.