BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 18597506)

  • 1. Single nanoparticle plasmonic devices by the "grafting to" method.
    Lupitskyy R; Motornov M; Minko S
    Langmuir; 2008 Aug; 24(16):8976-80. PubMed ID: 18597506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of nanoparticle actuation by responsive polymer brushes: from reconfigurable composite surfaces to plasmonic effects.
    Roiter Y; Minko I; Nykypanchuk D; Tokarev I; Minko S
    Nanoscale; 2012 Jan; 4(1):284-92. PubMed ID: 22081128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of gold nanoparticle composite nanostructures using thermosensitive core-shell particles as a template.
    Suzuki D; Kawaguchi H
    Langmuir; 2005 Aug; 21(18):8175-9. PubMed ID: 16114919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanosensors based on responsive polymer brushes and gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy.
    Tokareva I; Minko S; Fendler JH; Hutter E
    J Am Chem Soc; 2004 Dec; 126(49):15950-1. PubMed ID: 15584714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of gold@polymer core-shell particles and gold particle clusters on a template of thermoresponsive and pH-responsive coordination triblock copolymer.
    Zheng P; Jiang X; Zhang X; Zhang W; Shi L
    Langmuir; 2006 Oct; 22(22):9393-6. PubMed ID: 17042559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Responsive colloidal systems: reversible aggregation and fabrication of superhydrophobic surfaces.
    Motornov M; Sheparovych R; Lupitskyy R; MacWilliams E; Minko S
    J Colloid Interface Sci; 2007 Jun; 310(2):481-8. PubMed ID: 17335841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silica shell/gold core nanoparticles: correlating shell thickness with the plasmonic red shift upon aggregation.
    Vanderkooy A; Chen Y; Gonzaga F; Brook MA
    ACS Appl Mater Interfaces; 2011 Oct; 3(10):3942-7. PubMed ID: 21882833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible tuning of plasmon coupling in gold nanoparticle chains using ultrathin responsive polymer film.
    Nergiz SZ; Singamaneni S
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):945-51. PubMed ID: 21381739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the core-shell interface in gold@silica nanoparticles: a silica imprinting approach.
    Poovarodom S; Bass JD; Hwang SJ; Katz A
    Langmuir; 2005 Dec; 21(26):12348-56. PubMed ID: 16343013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailored core-shell-shell nanostructures: sandwiching gold nanoparticles between silica cores and tunable silica shells.
    Shi YL; Asefa T
    Langmuir; 2007 Aug; 23(18):9455-62. PubMed ID: 17661498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical nanosensor platform operating in near-physiological pH range via polymer-brush-mediated plasmon coupling.
    Tokarev I; Tokareva I; Minko S
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):143-6. PubMed ID: 21275381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photosensitive gold-nanoparticle-embedded dielectric nanowires.
    Hu MS; Chen HL; Shen CH; Hong LS; Huang BR; Chen KH; Chen LC
    Nat Mater; 2006 Feb; 5(2):102-6. PubMed ID: 16429142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electromagnetic interactions in plasmonic nanoparticle arrays.
    Bouhelier A; Bachelot R; Im JS; Wiederrecht GP; Lerondel G; Kostcheev S; Royer P
    J Phys Chem B; 2005 Mar; 109(8):3195-8. PubMed ID: 16851340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermosensitive core-shell particles as carrier systems for metallic nanoparticles.
    Lu Y; Mei Y; Ballauff M; Drechsler M
    J Phys Chem B; 2006 Mar; 110(9):3930-7. PubMed ID: 16509678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-grafted hybrid material consisting of gold nanoparticles and dextran exhibits mobility and reversible aggregation on a surface.
    Lee S; PĂ©rez-Luna VH
    Langmuir; 2007 Apr; 23(9):5097-9. PubMed ID: 17378591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-step generation of fluorophore-encapsulated gold nanoparticle core-shell materials.
    Sardar R; Shem PM; Pecchia-Bekkum C; Bjorge NS; Shumaker-Parry JS
    Nanotechnology; 2010 Aug; 21(34):345603. PubMed ID: 20683134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of highly dispersed core/shell-type titania nanocapsules containing a single Ag nanoparticle.
    Sakai H; Kanda T; Shibata H; Ohkubo T; Abe M
    J Am Chem Soc; 2006 Apr; 128(15):4944-5. PubMed ID: 16608315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distance and plasmon wavelength dependent fluorescence of molecules bound to silica-coated gold nanorods.
    Abadeer NS; Brennan MR; Wilson WL; Murphy CJ
    ACS Nano; 2014 Aug; 8(8):8392-406. PubMed ID: 25062430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct modulation of localized surface plasmon coupling of Au nanoparticles on solid substrates via weak polyelectrolyte-mediated layer-by-layer self assembly.
    Yuan W; Li CM
    Langmuir; 2009 Jul; 25(13):7578-85. PubMed ID: 19499932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold nanoparticle/polymer nanocomposites: dispersion of nanoparticles as a function of capping agent molecular weight and grafting density.
    Corbierre MK; Cameron NS; Sutton M; Laaziri K; Lennox RB
    Langmuir; 2005 Jun; 21(13):6063-72. PubMed ID: 15952861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.