BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 18597521)

  • 41. Electron density redistribution accounts for half the cooperativity of alpha helix formation.
    Morozov AV; Tsemekhman K; Baker D
    J Phys Chem B; 2006 Mar; 110(10):4503-5. PubMed ID: 16526672
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanism of helix nucleation and propagation: microscopic view from microsecond time scale MD simulations.
    Monticelli L; Tieleman DP; Colombo G
    J Phys Chem B; 2005 Nov; 109(43):20064-7. PubMed ID: 16853593
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of thioxopeptide bonds on alpha-helix structure and stability.
    Reiner A; Wildemann D; Fischer G; Kiefhaber T
    J Am Chem Soc; 2008 Jun; 130(25):8079-84. PubMed ID: 18512914
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Differential tapasin dependence of MHC class I molecules correlates with conformational changes upon peptide dissociation: a molecular dynamics simulation study.
    Sieker F; Straatsma TP; Springer S; Zacharias M
    Mol Immunol; 2008 Aug; 45(14):3714-22. PubMed ID: 18639935
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Water molecule adsorption on short alanine peptides: how short is the shortest gas-phase alanine-based helix?
    Kohtani M; Jarrold MF
    J Am Chem Soc; 2004 Jul; 126(27):8454-8. PubMed ID: 15238002
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Low-frequency vibrations in alpha-helices: helicoidal analysis of polyalanine and deoxymyoglobin molecular dynamics trajectories.
    Furois-Corbin S; Smith JC; Lavery R
    Biopolymers; 1995 Jun; 35(6):555-71. PubMed ID: 7766822
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Determination and modeling of peptide pKa by capillary zone electrophoresis.
    Plasson R; Cottet H
    Anal Chem; 2006 Aug; 78(15):5394-402. PubMed ID: 16878874
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular dynamics study of a nanotube-binding amphiphilic helical peptide at different water/hydrophobic interfaces.
    Chiu CC; Dieckmann GR; Nielsen SO
    J Phys Chem B; 2008 Dec; 112(51):16326-33. PubMed ID: 19049390
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Extreme stability of an unsolvated alpha-helix.
    Kohtani M; Jones TC; Schneider JE; Jarrold MF
    J Am Chem Soc; 2004 Jun; 126(24):7420-1. PubMed ID: 15198571
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Role of aspartic acid in collagen structure and stability: A molecular dynamics investigation.
    Raman SS; Parthasarathi R; Subramanian V; Ramasami T
    J Phys Chem B; 2006 Oct; 110(41):20678-85. PubMed ID: 17034259
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Constant-pH molecular dynamics with ionic strength effects: protonation-conformation coupling in decalysine.
    Machuqueiro M; Baptista AM
    J Phys Chem B; 2006 Feb; 110(6):2927-33. PubMed ID: 16471903
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Temperature-dependent intensity anomalies in amino acid esters: weak hydrogen bonds in protected glycine, alanine and valine.
    Otto KE; Hesse S; Wassermann TN; Rice CA; Suhm MA; Stafforst T; Diederichsen U
    Phys Chem Chem Phys; 2011 Aug; 13(31):14119-30. PubMed ID: 21709896
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The alpha-helix folds more rapidly at the C-terminus than at the N-terminus.
    Pozo Ramajo A; Petty SA; Starzyk A; Decatur SM; Volk M
    J Am Chem Soc; 2005 Oct; 127(40):13784-5. PubMed ID: 16201787
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mixed quantum classical simulations of excitons in peptide helices.
    Goj A; Bittner ER
    J Chem Phys; 2011 May; 134(20):205103. PubMed ID: 21639483
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Theoretical analysis of secondary structures of beta-peptides.
    Wu YD; Han W; Wang DP; Gao Y; Zhao YL
    Acc Chem Res; 2008 Oct; 41(10):1418-27. PubMed ID: 18828608
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Conformation dependence of the C(alpha)D(alpha) stretch mode in peptides. II. explicitly hydrated alanine peptide structures.
    Mirkin NG; Krimm S
    Biopolymers; 2009 Sep; 91(9):791-800. PubMed ID: 19425050
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Differential helix propensity of small apolar side chains studied by molecular dynamics simulations.
    Hermans J; Anderson AG; Yun RH
    Biochemistry; 1992 Jun; 31(24):5646-53. PubMed ID: 1610812
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reactive molecular dynamics study of the pH-dependent dynamic structure of α-helix.
    Golkaram M; Shin YK; van Duin AC
    J Phys Chem B; 2014 Nov; 118(47):13498-504. PubMed ID: 25365332
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Helix propensity of Ala and Val: a free energy perturbation study.
    Komeiji Y; Honda N; Yamato I
    Biophys Chem; 1993 Aug; 47(2):113-21. PubMed ID: 8400017
    [TBL] [Abstract][Full Text] [Related]  

  • 60. First-principles free-energy analysis of helix stability: the origin of the low entropy in pi helices.
    Ismer L; Ireta J; Neugebauer J
    J Phys Chem B; 2008 Apr; 112(13):4109-12. PubMed ID: 18327931
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.