These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 18597540)
1. Distribution of unselectively bound ligands along DNA. Lando DY; Nechipurenko YD J Biomol Struct Dyn; 2008 Oct; 26(2):187-96. PubMed ID: 18597540 [TBL] [Abstract][Full Text] [Related]
2. Short-range interactions and size of ligands bound to DNA strongly influence adsorptive phase transition caused by long-range interactions. Teif VB; Haroutiunian SG; Vorob'ev VI; Lando DY J Biomol Struct Dyn; 2002 Jun; 19(6):1093-100. PubMed ID: 12023811 [TBL] [Abstract][Full Text] [Related]
3. [Cooperation effects in binding of large ligands to DNA. II. Contact interactions between adsorbed ligands]. Nechipurenko IuD Mol Biol (Mosk); 1984; 18(4):1066-80. PubMed ID: 6504025 [TBL] [Abstract][Full Text] [Related]
4. [Cooperative effects during the binding of large ligands with DNA. Non-contact interaction between adsorbed ligands]. Nechipurenko IuD; Zasedatelev AS; Gurskiĭ GV Mol Biol (Mosk); 1984; 18(3):798-812. PubMed ID: 6472276 [TBL] [Abstract][Full Text] [Related]
5. Long-range interactions between ligands bound to a DNA molecule give rise to adsorption with the character of phase transition of the first kind. Lando DY; Teif VB J Biomol Struct Dyn; 2000 Apr; 17(5):903-11. PubMed ID: 10798534 [TBL] [Abstract][Full Text] [Related]
6. [Analysis of distribution of ligands adsorbed on DNA fragments]. Iovanovich B; Nechipurenko IuD Mol Biol (Mosk); 1990; 24(2):478-86. PubMed ID: 2362592 [TBL] [Abstract][Full Text] [Related]
7. Theoretical analysis of the inter-ligand overhauser effect: a new approach for mapping structural relationships of macromolecular ligands. London RE J Magn Reson; 1999 Dec; 141(2):301-11. PubMed ID: 10579953 [TBL] [Abstract][Full Text] [Related]
8. Modeling of DNA condensation and decondensation caused by ligand binding. Lando DY; Teif VB J Biomol Struct Dyn; 2002 Oct; 20(2):215-22. PubMed ID: 12354073 [TBL] [Abstract][Full Text] [Related]
9. DNA-helix bending, stiffening and elongation on ligand binding; analysis for several DNA-drug systems, general viscometric DNA response and stereochemical implications. Reinert KE J Biomol Struct Dyn; 1991 Oct; 9(2):331-52. PubMed ID: 1741966 [TBL] [Abstract][Full Text] [Related]
11. Ligand preferences of kringle 2 and homologous domains of human plasminogen: canvassing weak, intermediate, and high-affinity binding sites by 1H-NMR. Marti DN; Hu CK; An SS; von Haller P; Schaller J; Llinás M Biochemistry; 1997 Sep; 36(39):11591-604. PubMed ID: 9305949 [TBL] [Abstract][Full Text] [Related]
12. Ligand-receptor interactions in tethered polymer layers. Longo G; Szleifer I Langmuir; 2005 Nov; 21(24):11342-51. PubMed ID: 16285809 [TBL] [Abstract][Full Text] [Related]
13. [Effect of changes in the stoichiometry of DNA--ligand complexes during heat denaturation of DNA on helix-coil transition parameters]. Lando DIu; Ivanova MA; Akhrem AA Mol Biol (Mosk); 1980; 14(6):1281-8. PubMed ID: 7442671 [TBL] [Abstract][Full Text] [Related]
14. Mixed ligand copper(II) complexes of N,N-bis(benzimidazol-2-ylmethyl)amine (BBA) with diimine co-ligands: efficient chemical nuclease and protease activities and cytotoxicity. Loganathan R; Ramakrishnan S; Suresh E; Riyasdeen A; Akbarsha MA; Palaniandavar M Inorg Chem; 2012 May; 51(10):5512-32. PubMed ID: 22559171 [TBL] [Abstract][Full Text] [Related]