These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 18597813)
1. Experimental verification of a model describing solid phase microextraction (SPME) of freely dissolved organic pollutants in sediment porewater. Yang ZY; Maruya KA; Greenstein D; Tsukada D; Zeng EY Chemosphere; 2008 Aug; 72(10):1435-1440. PubMed ID: 18597813 [TBL] [Abstract][Full Text] [Related]
2. Predicting organic contaminant concentrations in sediment porewater using solid-phase microextraction. Yang ZY; Zeng EY; Maruya KA; Mai BX; Ran Y Chemosphere; 2007 Jan; 66(8):1408-14. PubMed ID: 17092541 [TBL] [Abstract][Full Text] [Related]
3. Desorption of hydrophobic compounds from laboratory-spiked sediments measured by Tenax absorbent and matrix solid-phase microextraction. You J; Pehkonen S; Landrum PF; Lydy MJ Environ Sci Technol; 2007 Aug; 41(16):5672-8. PubMed ID: 17874772 [TBL] [Abstract][Full Text] [Related]
4. Bioavailability of hydrophobic organic contaminants in sediment with different particle-size distributions. Mehler WT; Li H; Pang J; Sun B; Lydy MJ; You J Arch Environ Contam Toxicol; 2011 Jul; 61(1):74-82. PubMed ID: 20953950 [TBL] [Abstract][Full Text] [Related]
5. Solid-phase microextraction (SPME) with stable isotope calibration for measuring bioavailability of hydrophobic organic contaminants. Cui X; Bao L; Gan J Environ Sci Technol; 2013 Sep; 47(17):9833-40. PubMed ID: 23930601 [TBL] [Abstract][Full Text] [Related]
6. A passive sampler based on solid-phase microextraction for quantifying hydrophobic organic contaminants in sediment pore water. Maruya KA; Zeng EY; Tsukada D; Bay SM Environ Toxicol Chem; 2009 Apr; 28(4):733-40. PubMed ID: 19391690 [TBL] [Abstract][Full Text] [Related]
7. A passive sampler based on solid phase microextraction (SPME) for sediment-associated organic pollutants: Comparing freely-dissolved concentration with bioaccumulation. Maruya KA; Lao W; Tsukada D; Diehl DW Chemosphere; 2015 Oct; 137():192-7. PubMed ID: 26246043 [TBL] [Abstract][Full Text] [Related]
8. Determination of poly(dimethyl)siloxane-water partition coefficients for selected hydrophobic organic chemicals using 14C-labeled analogs. Yang ZY; Greenstein D; Zeng EY; Maruya KA J Chromatogr A; 2007 Apr; 1148(1):23-30. PubMed ID: 17383665 [TBL] [Abstract][Full Text] [Related]
9. A comparison of exposure methods for SPME-based bioavailability estimates. Harwood AD; Landrum PF; Lydy MJ Chemosphere; 2012 Feb; 86(5):506-11. PubMed ID: 22055312 [TBL] [Abstract][Full Text] [Related]
10. Accelerated equilibrium sampling of hydrophobic organic chemicals in solid matrices: A proof of concept on how to reach equilibrium for PCBs within 1 day. Vitale CM; Knudsmark Sjøholm K; Di Guardo A; Mayer P Chemosphere; 2019 Dec; 237():124537. PubMed ID: 31551203 [TBL] [Abstract][Full Text] [Related]
11. Predicting bioavailability of PAHs and PCBs with porewater concentrations measured by solid-phase microextraction fibers. Lu X; Skwarski A; Drake B; Reible DD Environ Toxicol Chem; 2011 May; 30(5):1109-16. PubMed ID: 21341305 [TBL] [Abstract][Full Text] [Related]
12. Using disposable solid-phase microextraction (SPME) to determine the freely dissolved concentration of polybrominated diphenyl ethers (PBDEs) in sediments. Jia F; Cui X; Wang W; Delgado-Moreno L; Gan J Environ Pollut; 2012 Aug; 167():34-40. PubMed ID: 22522316 [TBL] [Abstract][Full Text] [Related]
13. Calculating the diffusive flux of persistent organic pollutants between sediments and the water column on the Palos Verdes shelf superfund site using polymeric passive samplers. Fernandez LA; Lao W; Maruya KA; Burgess RM Environ Sci Technol; 2014 Apr; 48(7):3925-34. PubMed ID: 24564763 [TBL] [Abstract][Full Text] [Related]
14. Development of a solid-phase microextraction-based method for sampling of persistent chlorinated hydrocarbons in an urbanized coastal environment. Zeng EY; Tsukada D; Diehl DW Environ Sci Technol; 2004 Nov; 38(21):5737-43. PubMed ID: 15575294 [TBL] [Abstract][Full Text] [Related]
15. Testing of various membranes for use in a novel sediment porewater isolation chamber for infaunal invertebrate exposure to PCBs. Coleman JG; Lotufo GR; Kennedy AJ; Poda AR; Rushing TS; Ruiz CE; Bridges TS Chemosphere; 2014 Jul; 106():65-9. PubMed ID: 24582361 [TBL] [Abstract][Full Text] [Related]
16. A two-component mass balance model for calibration of solid-phase microextraction fibers for pyrethroids in seawater. Lao W; Maruya KA; Tsukada D Anal Chem; 2012 Nov; 84(21):9362-9. PubMed ID: 23072469 [TBL] [Abstract][Full Text] [Related]
17. Bioavailability and distribution of PAHs and PCBs in the sediment pore water of the German Bight and Wadden Sea. Niehus NC; Brockmeyer B; Witt G Mar Pollut Bull; 2019 Jan; 138():421-427. PubMed ID: 30660291 [TBL] [Abstract][Full Text] [Related]
18. Can solid-phase microextraction replace solvent extraction for water analysis in fish bioconcentration studies with highly hydrophobic organic chemicals? Böhm L; Düring RA; Bruckert HJ; Schlechtriem C Environ Toxicol Chem; 2017 Nov; 36(11):2887-2894. PubMed ID: 28488290 [TBL] [Abstract][Full Text] [Related]
19. Isotopic exchange on solid-phase micro extraction fiber in sediment under stagnant conditions: Implications for field application of performance reference compound calibration. Bao LJ; Wu X; Jia F; Zeng EY; Gan J Environ Toxicol Chem; 2016 Aug; 35(8):1978-85. PubMed ID: 26678218 [TBL] [Abstract][Full Text] [Related]
20. Bioavailability of PCBs from field-collected sediments: application of Tenax extraction and matrix-SPME techniques. Trimble TA; You J; Lydy MJ Chemosphere; 2008 Mar; 71(2):337-44. PubMed ID: 17942136 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]