These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 18598069)

  • 1. Folding control and unfolding free energy of yeast iso-1-cytochrome c bound to layered zirconium phosphate materials monitored by surface plasmon resonance.
    Bhambhani A; Chah S; Hvastkovs EG; Jensen GC; Rusling JF; Zare RN; Kumar CV
    J Phys Chem B; 2008 Jul; 112(30):9201-8. PubMed ID: 18598069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Denaturation and renaturation of self-assembled yeast iso-1-cytochrome c on Au.
    Chah S; Kumar CV; Hammond MR; Zare RN
    Anal Chem; 2004 Apr; 76(7):2112-7. PubMed ID: 15053677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface plasmon resonance and electrochemistry characterization of layer-by-layer self-assembled DNA and Zr4+ thin films, and their interaction with cytochrome c.
    Wang J; Wang F; Xu Z; Wang Y; Dong S
    Talanta; 2007 Nov; 74(1):104-9. PubMed ID: 18371618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon-induced enhancement in analytical performance based on gold nanoparticles deposited on TiO2 film.
    Zhu A; Luo Y; Tian Y
    Anal Chem; 2009 Sep; 81(17):7243-7. PubMed ID: 19655788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox-dependent interactions between reduced/oxidized cytochrome c and cytochrome c oxidase evaluated by in-situ electrochemical surface plasmon resonance.
    Hou Y; An J; Deng C; Chen S; Xiang J
    Anal Bioanal Chem; 2016 Jul; 408(18):4935-41. PubMed ID: 27215638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro and in silico studies of urea-induced denaturation of yeast iso-1-cytochrome c and its deletants at pH 6.0 and 25 °C.
    Haque MA; Zaidi S; Ubaid-Ullah S; Prakash A; Hassan MI; Islam A; Batra JK; Ahmad F
    J Biomol Struct Dyn; 2015; 33(7):1493-502. PubMed ID: 25175605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct electrochemistry of cytochrome c immobilized on gold electrode surface via Zr(IV) ion glue and its activity for ascorbic acid.
    Shervedani RK; Foroushani MS
    Bioelectrochemistry; 2014 Aug; 98():53-63. PubMed ID: 24686004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How does reorganization energy change upon protein unfolding? Monitoring the structural perturbations in the heme cavity of cytochrome c.
    Shafiey H; Ghourchian H; Mogharrab N
    Biophys Chem; 2008 May; 134(3):225-31. PubMed ID: 18325656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A lysine 73-->histidine variant of yeast iso-1-cytochrome c: evidence for a native-like intermediate in the unfolding pathway and implications for m value effects.
    Godbole S; Dong A; Garbin K; Bowler BE
    Biochemistry; 1997 Jan; 36(1):119-26. PubMed ID: 8993325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102.
    Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS
    Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tripeptide Self-Assembled Monolayers as Biocompatible Surfaces for Cytochrome
    Clark RA; Yawitz T; Luchs L; Conrad T; Bartlebaugh O; Boyd H; Hargittai B
    Langmuir; 2023 Jan; 39(4):1414-1424. PubMed ID: 36688667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical study of the interaction between cytochrome c and DNA at a modified gold electrode.
    Ding X; Li J; Hu J; Li Q
    Anal Biochem; 2005 Apr; 339(1):46-53. PubMed ID: 15766709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unfolding of cytochrome C upon interaction with azobenzene-modified copolymers.
    Sun J; Ruchmann J; Pallier A; Jullien L; Desmadril M; Tribet C
    Biomacromolecules; 2012 Nov; 13(11):3736-46. PubMed ID: 23005031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface electric field manipulation of the adsorption kinetics and biocatalytic properties of cytochrome c on a 3D macroporous Au electrode.
    Song YY; Li Y; Yang C; Xia XH
    Anal Bioanal Chem; 2008 Jan; 390(1):333-41. PubMed ID: 17955215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Refolding rate of stability-enhanced cytochrome c is independent of thermodynamic driving force.
    McGee WA; Nall BT
    Protein Sci; 1998 May; 7(5):1071-82. PubMed ID: 9605312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytochrome c self-assembly on alkanethiol monolayer electrodes as characterized by AFM, IR, QCM, and direct electrochemistry.
    Nakano K; Yoshitake T; Yamashita Y; Bowden EF
    Langmuir; 2007 May; 23(11):6270-5. PubMed ID: 17461603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal-enzyme frameworks: role of metal ions in promoting enzyme self-assembly on α-zirconium(IV) phosphate nanoplates.
    Pattammattel A; Deshapriya IK; Chowdhury R; Kumar CV
    Langmuir; 2013 Mar; 29(9):2971-81. PubMed ID: 23373444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Denaturation properties and folding transition states of leghemoglobin and other heme proteins.
    Basak P; Kundu N; Pattanayak R; Bhattacharyya M
    Biochemistry (Mosc); 2015 Apr; 80(4):463-72. PubMed ID: 25869364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of heme pocket structure and mobility on cytochrome c stability.
    Wen X; Patel KM; Russell BS; Bren KL
    Biochemistry; 2007 Mar; 46(9):2537-44. PubMed ID: 17279778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphology-dependent electrochemistry and electrocatalytical activity of cytochrome c.
    Liu H; Tian Y; Deng Z
    Langmuir; 2007 Aug; 23(18):9487-94. PubMed ID: 17665934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.