These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 1859861)
81. Microvasculatory reaction of skeletal muscle to Ti-15Mo in comparison to well-established titanium alloys. Pennekamp PH; Wimmer MA; Eschbach L; Burian B; Koch P; Kraft CN J Mater Sci Mater Med; 2007 Oct; 18(10):2053-60. PubMed ID: 17558479 [TBL] [Abstract][Full Text] [Related]
82. Ti-6Al-7Nb promotes cell spreading and fibronectin and osteopontin synthesis in osteoblast-like cells. Osathanon T; Bespinyowong K; Arksornnukit M; Takahashi H; Pavasant P J Mater Sci Mater Med; 2006 Jul; 17(7):619-25. PubMed ID: 16770546 [TBL] [Abstract][Full Text] [Related]
83. The bone tissue compatibility of a new Ti-Nb-Sn alloy with a low Young's modulus. Miura K; Yamada N; Hanada S; Jung TK; Itoi E Acta Biomater; 2011 May; 7(5):2320-6. PubMed ID: 21316491 [TBL] [Abstract][Full Text] [Related]
84. Comparison of metal release from various metallic biomaterials in vitro. Okazaki Y; Gotoh E Biomaterials; 2005 Jan; 26(1):11-21. PubMed ID: 15193877 [TBL] [Abstract][Full Text] [Related]
85. A Tribological and Ion Released Research of Ti-Materials for Medical Devices. Silva D; Arcos C; Montero C; Guerra C; Martínez C; Li X; Ringuedé A; Cassir M; Ogle K; Guzmán D; Aguilar C; Páez M; Sancy M Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009273 [TBL] [Abstract][Full Text] [Related]
86. Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. Yan C; Hao L; Hussein A; Young P J Mech Behav Biomed Mater; 2015 Nov; 51():61-73. PubMed ID: 26210549 [TBL] [Abstract][Full Text] [Related]
87. Electrochemical studies of the corrosion behaviour of titanium and the Ti-6Al-4V alloy using electrochemical impedance spectroscopy. Grosgogeat B; Boinet M; Dalard F; Lissac M Biomed Mater Eng; 2004; 14(3):323-31. PubMed ID: 15299244 [TBL] [Abstract][Full Text] [Related]
88. Effect of surface contamination on adhesive bonding of cast pure titanium and Ti-6Al-4V alloy. Watanabe I; Watanabe E; Yoshida K; Okabe T J Prosthet Dent; 1999 Mar; 81(3):270-6. PubMed ID: 10050113 [TBL] [Abstract][Full Text] [Related]
89. Fit of cast commercially pure titanium and Ti-6Al-4V alloy crowns before and after marginal refinement by electrical discharge machining. Contreras EF; Henriques GE; Giolo SR; Nobilo MA J Prosthet Dent; 2002 Nov; 88(5):467-72. PubMed ID: 12473994 [TBL] [Abstract][Full Text] [Related]
90. Hybrid diffusive/PVD treatments to improve the tribological resistance of Ti-6Al-4V. Marin E; Offoiach R; Lanzutti A; Regis M; Fusi S; Fedrizzi L Biomed Mater Eng; 2014; 24(1):581-92. PubMed ID: 24211942 [TBL] [Abstract][Full Text] [Related]
91. The role of titanium implant surface modification with hydroxyapatite nanoparticles in progressive early bone-implant fixation in vivo. Lin A; Wang CJ; Kelly J; Gubbi P; Nishimura I Int J Oral Maxillofac Implants; 2009; 24(5):808-16. PubMed ID: 19865620 [TBL] [Abstract][Full Text] [Related]
92. High cycle fatigue behavior of implant Ti-6Al-4V in air and simulated body fluid. Liu YJ; Cui SM; He C; Li JK; Wang QY Biomed Mater Eng; 2014; 24(1):263-9. PubMed ID: 24211906 [TBL] [Abstract][Full Text] [Related]
93. Fatigue properties of a metastable beta-type titanium alloy with reversible phase transformation. Li SJ; Cui TC; Hao YL; Yang R Acta Biomater; 2008 Mar; 4(2):305-17. PubMed ID: 18006397 [TBL] [Abstract][Full Text] [Related]
94. Effect of thermal treatments on tensile strength of commercially cast pure titanium and Ti-6Al-4V alloys. da Rocha SS; Adabo GL; Vaz LG; Henriques GE J Mater Sci Mater Med; 2005 Aug; 16(8):759-66. PubMed ID: 15965747 [TBL] [Abstract][Full Text] [Related]
95. Mechanical properties of cast Ti-6Al-4V-XCu alloys. Aoki T; Okafor IC; Watanabe I; Hattori M; Oda Y; Okabe T J Oral Rehabil; 2004 Nov; 31(11):1109-14. PubMed ID: 15525390 [TBL] [Abstract][Full Text] [Related]
96. Electropolishing of CP titanium and its alloys in an alcoholic solution-based electrolyte. Tajima K; Hironaka M; Chen KK; Nagamatsu Y; Kakigawa H; Kozono Y Dent Mater J; 2008 Mar; 27(2):258-65. PubMed ID: 18540401 [TBL] [Abstract][Full Text] [Related]
97. The fatigue strength of porous-coated Ti-6%Al-4%V implant alloy. Yue S; Pilliar RM; Weatherly GC J Biomed Mater Res; 1984; 18(9):1043-58. PubMed ID: 6544792 [TBL] [Abstract][Full Text] [Related]
98. Urine Aluminum Concentration as a Possible Implant Biomarker of Aguilera-Correa JJ; Auñón Á; Boiza-Sánchez M; Mahillo-Fernández I; Mediero A; Eguibar-Blázquez D; Conde A; Arenas MÁ; de-Damborenea JJ; Cordero-Ampuero J; Esteban J ACS Omega; 2019 Jul; 4(7):11815-11823. PubMed ID: 31460290 [TBL] [Abstract][Full Text] [Related]
99. A study of histological responses from Ti-6Al-7Nb alloy dental implants with and without plasma-sprayed hydroxyapatite coating in dogs. Lavos-Valereto IC; König B; Rossa C; Marcantonio E; Zavaglia AC J Mater Sci Mater Med; 2001 Mar; 12(3):273-6. PubMed ID: 15348312 [TBL] [Abstract][Full Text] [Related]
100. Apatite Formation and Biocompatibility of a Low Young's Modulus Ti-Nb-Sn Alloy Treated with Anodic Oxidation and Hot Water. Tanaka H; Mori Y; Noro A; Kogure A; Kamimura M; Yamada N; Hanada S; Masahashi N; Itoi E PLoS One; 2016; 11(2):e0150081. PubMed ID: 26914329 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]