BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 18598780)

  • 1. The mTOR pathway and its role in human genetic diseases.
    Rosner M; Hanneder M; Siegel N; Valli A; Fuchs C; Hengstschläger M
    Mutat Res; 2008; 659(3):284-92. PubMed ID: 18598780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mTOR/S6K signalling pathway: the role of the TSC1/2 tumour suppressor complex and the proto-oncogene Rheb.
    Nobukini T; Thomas G
    Novartis Found Symp; 2004; 262():148-54; discussion 154-9, 265-8. PubMed ID: 15562827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytoplasmic and nuclear distribution of the protein complexes mTORC1 and mTORC2: rapamycin triggers dephosphorylation and delocalization of the mTORC2 components rictor and sin1.
    Rosner M; Hengstschläger M
    Hum Mol Genet; 2008 Oct; 17(19):2934-48. PubMed ID: 18614546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TOR signaling.
    Harris TE; Lawrence JC
    Sci STKE; 2003 Dec; 2003(212):re15. PubMed ID: 14668532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Therapeutic targeting of mTOR in tuberous sclerosis.
    Sampson JR
    Biochem Soc Trans; 2009 Feb; 37(Pt 1):259-64. PubMed ID: 19143643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The tuberous sclerosis genes and regulation of the cyclin-dependent kinase inhibitor p27.
    Rosner M; Freilinger A; Hengstschläger M
    Mutat Res; 2006 Sep; 613(1):10-6. PubMed ID: 16713332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dysregulation of HIF and VEGF is a unifying feature of the familial hamartoma syndromes.
    Brugarolas J; Kaelin WG
    Cancer Cell; 2004 Jul; 6(1):7-10. PubMed ID: 15261137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical and diverse involvement of Akt/mammalian target of rapamycin signaling in human lung carcinomas.
    Dobashi Y; Suzuki S; Matsubara H; Kimura M; Endo S; Ooi A
    Cancer; 2009 Jan; 115(1):107-18. PubMed ID: 19090006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of the mammalian target of rapamycin signalling pathway in epidermal tumours and its correlation with cyclin-dependent kinase 2.
    Chen SJ; Nakahara T; Takahara M; Kido M; Dugu L; Uchi H; Takeuchi S; Tu YT; Moroi Y; Furue M
    Br J Dermatol; 2009 Feb; 160(2):442-5. PubMed ID: 19016696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of mTOR in the management of solid tumors: an overview.
    Strimpakos AS; Karapanagiotou EM; Saif MW; Syrigos KN
    Cancer Treat Rev; 2009 Apr; 35(2):148-59. PubMed ID: 19013721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of the AKT/mTOR pathway in autosomal recessive polycystic kidney disease (ARPKD).
    Fischer DC; Jacoby U; Pape L; Ward CJ; Kuwertz-Broeking E; Renken C; Nizze H; Querfeld U; Rudolph B; Mueller-Wiefel DE; Bergmann C; Haffner D
    Nephrol Dial Transplant; 2009 Jun; 24(6):1819-27. PubMed ID: 19176689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphoproteomic profile of mTOR, Ras/Raf kinase/ERK, and NF-kappaB pathways in human gastric adenocarcinoma.
    Feng W; Brown RE; Trung CD; Li W; Wang L; Khoury T; Alrawi S; Yao J; Xia K; Tan D
    Ann Clin Lab Sci; 2008; 38(3):195-209. PubMed ID: 18715846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IGF-1-stimulated protein synthesis in oligodendrocyte progenitors requires PI3K/mTOR/Akt and MEK/ERK pathways.
    Bibollet-Bahena O; Almazan G
    J Neurochem; 2009 Jun; 109(5):1440-51. PubMed ID: 19453943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renal activity of Akt kinase in obese Zucker rats.
    Zdychová J; Kazdová L; Pelikanová T; Lindsley JN; Anderson S; Komers R
    Exp Biol Med (Maywood); 2008 Oct; 233(10):1231-41. PubMed ID: 18641049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 9-Aminoacridine-based anticancer drugs target the PI3K/AKT/mTOR, NF-kappaB and p53 pathways.
    Guo C; Gasparian AV; Zhuang Z; Bosykh DA; Komar AA; Gudkov AV; Gurova KV
    Oncogene; 2009 Feb; 28(8):1151-61. PubMed ID: 19137016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. KAI1/CD82 decreases Rac1 expression and cell proliferation through PI3K/Akt/mTOR pathway in H1299 lung carcinoma cells.
    Choi UJ; Jee BK; Lim Y; Lee KH
    Cell Biochem Funct; 2009 Jan; 27(1):40-7. PubMed ID: 19107873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antineoplastic effect of proliferation signal inhibitors: from biology to clinical application.
    Bertoni E; Salvadori M
    J Nephrol; 2009; 22(4):457-62. PubMed ID: 19662600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting the PI3K-AKT-mTOR pathway: progress, pitfalls, and promises.
    Yap TA; Garrett MD; Walton MI; Raynaud F; de Bono JS; Workman P
    Curr Opin Pharmacol; 2008 Aug; 8(4):393-412. PubMed ID: 18721898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth suppressive cytokines and the AKT/mTOR pathway.
    Kroczynska B; Kaur S; Platanias LC
    Cytokine; 2009; 48(1-2):138-43. PubMed ID: 19682919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amyloid-beta interrupts the PI3K-Akt-mTOR signaling pathway that could be involved in brain-derived neurotrophic factor-induced Arc expression in rat cortical neurons.
    Chen TJ; Wang DC; Chen SS
    J Neurosci Res; 2009 Aug; 87(10):2297-307. PubMed ID: 19301428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.