BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 18599073)

  • 1. Thermostable Bacillus subtilis lipases: in vitro evolution and structural insight.
    Ahmad S; Kamal MZ; Sankaranarayanan R; Rao NM
    J Mol Biol; 2008 Aug; 381(2):324-40. PubMed ID: 18599073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis of selection and thermostability of laboratory evolved Bacillus subtilis lipase.
    Acharya P; Rajakumara E; Sankaranarayanan R; Rao NM
    J Mol Biol; 2004 Aug; 341(5):1271-81. PubMed ID: 15321721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallization and preliminary X-ray crystallographic investigations on several thermostable forms of a Bacillus subtilis lipase.
    Rajakumara E; Acharya P; Ahmad S; Shanmugam VM; Rao NM; Sankaranarayanan R
    Acta Crystallogr D Biol Crystallogr; 2004 Jan; 60(Pt 1):160-2. PubMed ID: 14684916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability curves of laboratory evolved thermostable mutants of a Bacillus subtilis lipase.
    Kamal MZ; Ahmad S; Yedavalli P; Rao NM
    Biochim Biophys Acta; 2010 Sep; 1804(9):1850-6. PubMed ID: 20599630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro evolved non-aggregating and thermostable lipase: structural and thermodynamic investigation.
    Kamal MZ; Ahmad S; Molugu TR; Vijayalakshmi A; Deshmukh MV; Sankaranarayanan R; Rao NM
    J Mol Biol; 2011 Oct; 413(3):726-41. PubMed ID: 21925508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering lipase A from mesophilic Bacillus subtilis for activity at low temperatures.
    Kumar V; Yedavalli P; Gupta V; Rao NM
    Protein Eng Des Sel; 2014 Mar; 27(3):73-82. PubMed ID: 24402332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for the remarkable stability of Bacillus subtilis lipase (Lip A) at low pH.
    Rajakumara E; Acharya P; Ahmad S; Sankaranaryanan R; Rao NM
    Biochim Biophys Acta; 2008 Feb; 1784(2):302-11. PubMed ID: 18053819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the thermostability and activity of Bacillus subtilis lipase mutants: insights from molecular dynamics simulations.
    Singh B; Bulusu G; Mitra A
    J Phys Chem B; 2015 Jan; 119(2):392-409. PubMed ID: 25495458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RankProt: A multi criteria-ranking platform to attain protein thermostabilizing mutations and its in vitro applications - Attribute based prediction method on the principles of Analytical Hierarchical Process.
    Chakravorty D; Patra S
    PLoS One; 2018; 13(10):e0203036. PubMed ID: 30286107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilization of the cold shock protein CspB from Bacillus subtilis by evolutionary optimization of Coulombic interactions.
    Wunderlich M; Martin A; Schmid FX
    J Mol Biol; 2005 Apr; 347(5):1063-76. PubMed ID: 15784264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutatomics analysis of the systematic thermostability profile of Bacillus subtilis lipase A.
    Tian F; Yang C; Wang C; Guo T; Zhou P
    J Mol Model; 2014 Jun; 20(6):2257. PubMed ID: 24827611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability.
    Reetz MT; Carballeira JD; Vogel A
    Angew Chem Int Ed Engl; 2006 Nov; 45(46):7745-51. PubMed ID: 17075931
    [No Abstract]   [Full Text] [Related]  

  • 13. Effects of point mutations on the thermostability of B. subtilis lipase: investigating nonadditivity.
    Singh B; Bulusu G; Mitra A
    J Comput Aided Mol Des; 2016 Oct; 30(10):899-916. PubMed ID: 27696241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes.
    Reetz MT; Carballeira JD
    Nat Protoc; 2007; 2(4):891-903. PubMed ID: 17446890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Point mutation Gln121-Arg increased temperature optima of Bacillus lipase (1.4 subfamily) by fifteen degrees.
    Goomber S; Kumar R; Singh R; Mishra N; Kaur J
    Int J Biol Macromol; 2016 Jul; 88():507-14. PubMed ID: 27083848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermostable variants of the recombinant xylanase A from Bacillus subtilis produced by directed evolution show reduced heat capacity changes.
    Ruller R; Deliberto L; Ferreira TL; Ward RJ
    Proteins; 2008 Mar; 70(4):1280-93. PubMed ID: 17876824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-vitro selection of highly stabilized protein variants with optimized surface.
    Martin A; Sieber V; Schmid FX
    J Mol Biol; 2001 Jun; 309(3):717-26. PubMed ID: 11397091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution X-ray structure of the DNA-binding protein HU from the hyper-thermophilic Thermotoga maritima and the determinants of its thermostability.
    Christodoulou E; Rypniewski WR; Vorgias CR
    Extremophiles; 2003 Apr; 7(2):111-22. PubMed ID: 12664263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimized variants of the cold shock protein from in vitro selection: structural basis of their high thermostability.
    Max KE; Wunderlich M; Roske Y; Schmid FX; Heinemann U
    J Mol Biol; 2007 Jun; 369(4):1087-97. PubMed ID: 17481655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Just an additional hydrogen bond can dramatically reduce the catalytic activity of Bacillus subtilis lipase A I12T mutant: an integration of computational modeling and experimental analysis.
    Ni Z; Jin R; Chen H; Lin X
    Comput Biol Med; 2013 Nov; 43(11):1882-8. PubMed ID: 24209933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.