BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 18599208)

  • 1. Potential of Chromolaena odorata for phytoremediation of (137)Cs from solution and low level nuclear waste.
    Singh S; Thorat V; Kaushik CP; Raj K; Eapen S; D'Souza SF
    J Hazard Mater; 2009 Mar; 162(2-3):743-5. PubMed ID: 18599208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoremediation of radiostrontium ((90)Sr) and radiocesium ((137)Cs) using giant milky weed (Calotropis gigantea R.Br.) plants.
    Eapen S; Singh S; Thorat V; Kaushik CP; Raj K; D'Souza SF
    Chemosphere; 2006 Dec; 65(11):2071-3. PubMed ID: 16876232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoremediation of 137cesium and 90strontium from solutions and low-level nuclear waste by Vetiveria zizanoides.
    Singh S; Eapen S; Thorat V; Kaushik CP; Raj K; D'Souza SF
    Ecotoxicol Environ Saf; 2008 Feb; 69(2):306-11. PubMed ID: 17257679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uptake and accumulation of cadmium, lead and zinc by Siam weed [Chromolaena odorata (L.) King & Robinson].
    Tanhan P; Kruatrachue M; Pokethitiyook P; Chaiyarat R
    Chemosphere; 2007 Jun; 68(2):323-9. PubMed ID: 17280700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation of fuel oil and lead co-contaminated soil by Chromolaena odorata in association with Micrococcus luteus.
    Jampasri K; Pokethitiyook P; Kruatrachue M; Ounjai P; Kumsopa A
    Int J Phytoremediation; 2016 Oct; 18(10):994-1001. PubMed ID: 27159380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytoremediation potential of
    Jampasri K; Saeng-Ngam S; Larpkern P; Jantasorn A; Kruatrachue M
    Int J Phytoremediation; 2021; 23(10):1061-1066. PubMed ID: 33501846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation of (137)Cs in Brazilian soils and its transfer to plants under different climatic conditions.
    Handl J; Sachse R; Jakob D; Michel R; Evangelista H; Gonçalves AC; de Freitas AC
    J Environ Radioact; 2008 Feb; 99(2):271-87. PubMed ID: 17884260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological response of Epipremnum aureum for cobalt-60 and cesium-137 translocation and rhizofiltration.
    Kamel HA; Eskander SB; Aly MA
    Int J Phytoremediation; 2007; 9(5):403-17. PubMed ID: 18246726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the effect of oil on phytoremediation of PCB co-contamination in transformer oil using
    Anyasi RO; Atagana HI
    Int J Phytoremediation; 2021; 23(6):597-608. PubMed ID: 33556260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preliminary evaluation of (135)Cs/(137)Cs as a forensic tool for identifying source of radioactive contamination.
    Taylor VF; Evans RD; Cornett RJ
    J Environ Radioact; 2008 Jan; 99(1):109-18. PubMed ID: 17869392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytoremediation of stable Cs from solutions by Calendula alata, Amaranthus chlorostachys and Chenopodium album.
    Moogouei R; Borghei M; Arjmandi R
    Ecotoxicol Environ Saf; 2011 Oct; 74(7):2036-9. PubMed ID: 21839516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of mercury-binding peptides in vegetative parts of Chromolaena odorata.
    Velasco-Alinsug MP; Rivero GC; Quibuyen AO
    Z Naturforsch C J Biosci; 2005; 60(3-4):252-9. PubMed ID: 15948592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using elevated CO2 to increase the biomass of a Sorghum vulgare x Sorghum vulgare var. sudanense hybrid and Trifolium pratense L. and to trigger hyperaccumulation of cesium.
    Wu H; Tang S; Zhang X; Guo J; Song Z; Tian S; Smith DL
    J Hazard Mater; 2009 Oct; 170(2-3):861-70. PubMed ID: 19523760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. (137)Cs and (90)Sr uptake by sunflower cultivated under hydroponic conditions.
    Soudek P; Valenová S; Vavríková Z; Vanek T
    J Environ Radioact; 2006; 88(3):236-50. PubMed ID: 16630674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Foliar uptake of cesium from the water column by aquatic macrophytes.
    Pinder JE; Hinton TG; Whicker FW
    J Environ Radioact; 2006; 85(1):23-47. PubMed ID: 15990203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Scots pine (Pinus sylvestris L.) plantings on long term (137)Cs and (90)Sr recycling from a waste burial site in the Chernobyl Red Forest.
    Thiry Y; Colle C; Yoschenko V; Levchuk S; Van Hees M; Hurtevent P; Kashparov V
    J Environ Radioact; 2009 Dec; 100(12):1062-8. PubMed ID: 19525043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting inter-taxa differences in plant uptake of cesium-134/137.
    Willey NJ; Tang S; Watt NR
    J Environ Qual; 2005; 34(5):1478-89. PubMed ID: 16091600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiocesium contamination behavior and its effect on potassium absorption in tropical or subtropical plants.
    Carvalho C; Anjos RM; Mosquera B; Macario K; Veiga R
    J Environ Radioact; 2006; 86(2):241-50. PubMed ID: 16253405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radioactivity levels in major French rivers: summary of monitoring chronicles acquired over the past thirty years and current status.
    Eyrolle F; Claval D; Gontier G; Antonelli C
    J Environ Monit; 2008 Jul; 10(7):800-11. PubMed ID: 18688446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cesium accumulation by fish following acute input to lakes: a comparison of experimental and Chernobyl-impacted systems.
    Pinder JE; Hinton TG; Whicker FW; Smith JT
    J Environ Radioact; 2009 Jun; 100(6):456-67. PubMed ID: 19375835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.