These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 18599292)

  • 21. A modified UCT method for biological nutrient removal: configuration and performance.
    Vaiopoulou E; Aivasidis A
    Chemosphere; 2008 Jul; 72(7):1062-8. PubMed ID: 18519149
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biological nitrogen and phosphorus removal in UCT-type MBR process.
    Lee H; Han J; Yun Z
    Water Sci Technol; 2009; 59(11):2093-9. PubMed ID: 19494447
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Contribution of microfiltration on phosphorus removal in the sequencing anoxic/anaerobic membrane bioreactor.
    Cho J; Song KG; Ahn KH
    Bioprocess Biosyst Eng; 2009 Aug; 32(5):593-602. PubMed ID: 19048295
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of aerobic denitrifying activity among three cultural species with various carbon sources.
    Otani Y; Hasegawa K; Hanaki K
    Water Sci Technol; 2004; 50(8):15-22. PubMed ID: 15566182
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Free nitrous acid inhibition on anoxic phosphorus uptake and denitrification by poly-phosphate accumulating organisms.
    Zhou Y; Pijuan M; Yuan Z
    Biotechnol Bioeng; 2007 Nov; 98(4):903-12. PubMed ID: 17486651
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Denitrification in USB reactor with granulated biomass.
    Pagácová P; Galbová K; Drtil M; Jonatová I
    Bioresour Technol; 2010 Jan; 101(1):150-6. PubMed ID: 19716692
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Carbon source recovery from waste activated sludge by alkaline hydrolysis and gamma-ray irradiation for biological denitrification.
    Kim TH; Nam YK; Park C; Lee M
    Bioresour Technol; 2009 Dec; 100(23):5694-9. PubMed ID: 19596570
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relationship of protozoan biomass to phosphate and nitrate removal from activated sludge mixed liquor.
    Akpor OB; Momba MN
    Biotechnol J; 2010 Mar; 5(3):304-13. PubMed ID: 19902460
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of wastewater composition on biological nutrient removal in UniFed SBR process.
    Zhao CH; Peng YZ; Wang SY; Tang XG
    Water Sci Technol; 2008; 58(4):803-10. PubMed ID: 18776615
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phosphorus fractionation in membrane-assisted biological nutrient removal processes.
    Kim M; Nakhla G
    Chemosphere; 2009 Aug; 76(9):1283-7. PubMed ID: 19577274
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selection between alcohols and volatile fatty acids as external carbon sources for EBPR.
    Puig S; Coma M; Monclús H; van Loosdrecht MC; Colprim J; Balaguer MD
    Water Res; 2008 Feb; 42(3):557-66. PubMed ID: 17764715
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mixed carbon sources for nitrate reduction in activated sludge-identification of bacteria and process activity studies.
    Hagman M; Nielsen JL; Nielsen PH; Jansen Jl
    Water Res; 2008 Mar; 42(6-7):1539-46. PubMed ID: 18061233
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluating the efficiency of carbon utilisation via bioenergetics between biological aerobic and denitrifying phosphorus removal systems.
    Jin Z; Ji F; He Y; Zhao M; Xu X; Zheng XY
    PLoS One; 2017; 12(10):e0187007. PubMed ID: 29065157
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Real-time control strategy for simultaneous nitrogen and phosphorus removal using aerobic granular sludge.
    Kishida N; Tsuneda S; Sakakibara Y; Kim JH; Sudo R
    Water Sci Technol; 2008; 58(2):445-50. PubMed ID: 18701799
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The investigation of effect of organic carbon sources addition in anaerobic-aerobic (low dissolved oxygen) sequencing batch reactor for nutrients removal from wastewaters.
    Zheng X; Tong J; Li H; Chen Y
    Bioresour Technol; 2009 May; 100(9):2515-20. PubMed ID: 19136253
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A sequencing batch reactor system for high-level biological nitrogen and phosphorus removal from abattoir wastewater.
    Lemaire R; Yuan Z; Bernet N; Marcos M; Yilmaz G; Keller J
    Biodegradation; 2009 Jun; 20(3):339-50. PubMed ID: 18937035
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biological nitrate removal in industrial wastewater treatment: which electron donor we can choose.
    Park JY; Yoo YJ
    Appl Microbiol Biotechnol; 2009 Mar; 82(3):415-29. PubMed ID: 19148639
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The pretreatment by the Fe-Cu process for enhancing biological degradability of the mixed wastewater.
    Fan JH; Ma LM
    J Hazard Mater; 2009 May; 164(2-3):1392-7. PubMed ID: 19019539
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characteristics of aerobic granule and nitrogen and phosphorus removal in a SBR.
    Wang F; Lu S; Wei Y; Ji M
    J Hazard Mater; 2009 May; 164(2-3):1223-7. PubMed ID: 18980806
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Substrate-dependent denitrification of abundant probe-defined denitrifying bacteria in activated sludge.
    Morgan-Sagastume F; Nielsen JL; Nielsen PH
    FEMS Microbiol Ecol; 2008 Nov; 66(2):447-61. PubMed ID: 18811652
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.