These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 18599418)
1. Model-based estimation of quantitative ultrasound variables at the proximal femur. Dencks S; Barkmann R; Padilla F; Laugier P; Schmitz G; Glüer CC IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1304-15. PubMed ID: 18599418 [TBL] [Abstract][Full Text] [Related]
2. Optimal prediction of bone mineral density with ultrasonic measurements in excised human femur. Haïat G; Padilla F; Barkmann R; Dencks S; Moser U; Glüer CC; Laugier P Calcif Tissue Int; 2005 Sep; 77(3):186-92. PubMed ID: 16151672 [TBL] [Abstract][Full Text] [Related]
3. Estimation of multipath transmission parameters for quantitative ultrasound measurements of bone. Dencks S; Schmitz G IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Sep; 60(9):1884-95. PubMed ID: 24658719 [TBL] [Abstract][Full Text] [Related]
4. A device for in vivo measurements of quantitative ultrasound variables at the human proximal femur. Barkmann R; Laugier P; Moser U; Dencks S; Klausner M; Padilla F; Haïat G; Glüer CC IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1197-204. PubMed ID: 18599408 [TBL] [Abstract][Full Text] [Related]
5. In vivo measurements of ultrasound transmission through the human proximal femur. Barkmann R; Laugier P; Moser U; Dencks S; Klausner M; Padilla F; Haiat G; Heller M; Glüer CC Ultrasound Med Biol; 2008 Jul; 34(7):1186-90. PubMed ID: 18294756 [TBL] [Abstract][Full Text] [Related]
6. Relationships of trabecular bone structure with quantitative ultrasound parameters: in vitro study on human proximal femur using transmission and backscatter measurements. Padilla F; Jenson F; Bousson V; Peyrin F; Laugier P Bone; 2008 Jun; 42(6):1193-202. PubMed ID: 18396124 [TBL] [Abstract][Full Text] [Related]
7. An investigation of unique and shared gene effects on speed of sound and bone density using axial transmission quantitative ultrasound and DXA in twins. Knapp KM; Andrew T; MacGregor AJ; Blake GM; Fogelman I; Spector TD J Bone Miner Res; 2003 Aug; 18(8):1525-30. PubMed ID: 12929943 [TBL] [Abstract][Full Text] [Related]
8. Prediction of density and mechanical properties of human trabecular bone in vitro by using ultrasound transmission and backscattering measurements at 0.2-6.7 MHz frequency range. Hakulinen MA; Day JS; Töyräs J; Timonen M; Kröger H; Weinans H; Kiviranta I; Jurvelin JS Phys Med Biol; 2005 Apr; 50(8):1629-42. PubMed ID: 15815086 [TBL] [Abstract][Full Text] [Related]
9. Wavelet-based signal processing of in vitro ultrasonic measurements at the proximal femur. Dencks S; Barkmann R; Padilla F; Haïat G; Laugier P; Glüer CC Ultrasound Med Biol; 2007 Jun; 33(6):970-80. PubMed ID: 17445965 [TBL] [Abstract][Full Text] [Related]
10. A method for the estimation of femoral bone mineral density from variables of ultrasound transmission through the human femur. Barkmann R; Laugier P; Moser U; Dencks S; Padilla F; Haiat G; Heller M; Glüer CC Bone; 2007 Jan; 40(1):37-44. PubMed ID: 16949896 [TBL] [Abstract][Full Text] [Related]
11. Comparison of an imaging heel quantitative ultrasound device (DTU-one) with densitometric and ultrasonic measurements. Diessel E; Fuerst T; Njeh CF; Hans D; Cheng S; Genant HK Br J Radiol; 2000 Jan; 73(865):23-30. PubMed ID: 10721316 [TBL] [Abstract][Full Text] [Related]
12. Variation of ultrasonic parameters with microstructure and material properties of trabecular bone: a 3D model simulation. Haïat G; Padilla F; Peyrin F; Laugier P J Bone Miner Res; 2007 May; 22(5):665-74. PubMed ID: 17295606 [TBL] [Abstract][Full Text] [Related]
13. Prediction of the strength of the elderly proximal femur by bone mineral density and quantitative ultrasound measurements of the heel and tibia. Bouxsein ML; Coan BS; Lee SC Bone; 1999 Jul; 25(1):49-54. PubMed ID: 10423021 [TBL] [Abstract][Full Text] [Related]
14. Comparison of six calcaneal quantitative ultrasound devices: precision and hip fracture discrimination. Njeh CF; Hans D; Li J; Fan B; Fuerst T; He YQ; Tsuda-Futami E; Lu Y; Wu CY; Genant HK Osteoporos Int; 2000; 11(12):1051-62. PubMed ID: 11256897 [TBL] [Abstract][Full Text] [Related]
15. Ultrasonic guided waves in bone. Moilanen P IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1277-86. PubMed ID: 18599415 [TBL] [Abstract][Full Text] [Related]
16. Solid volume fraction estimation of bone:marrow replica models using ultrasound transit time spectroscopy. Wille ML; Langton CM Ultrasonics; 2016 Feb; 65():329-37. PubMed ID: 26455950 [TBL] [Abstract][Full Text] [Related]
17. Is quantitative ultrasound dependent on bone structure? A reflection. Njeh CF; Fuerst T; Diessel E; Genant HK Osteoporos Int; 2001; 12(1):1-15. PubMed ID: 11305077 [TBL] [Abstract][Full Text] [Related]
19. In vitro ultrasound measurement at the human femur. Padilla F; Akrout L; Kolta S; Latremouille C; Roux C; Laugier P Calcif Tissue Int; 2004 Nov; 75(5):421-30. PubMed ID: 15599500 [TBL] [Abstract][Full Text] [Related]
20. The correlation between the SOS in trabecular bone and stiffness and density studied by finite-element analysis. Goossens L; Vanderoost J; Jaecques S; Boonen S; D'hooge J; Lauriks W; Van der Perre G IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1234-42. PubMed ID: 18599411 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]