BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 18599419)

  • 1. Noninvasive assessment of human jawbone using ultrasonic guided waves.
    Mahmoud A; Cortes D; Abaza A; Ammar H; Hazey M; Ngan P; Crout R; Mukdadi O
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1316-27. PubMed ID: 18599419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonic guided waves in bone.
    Moilanen P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1277-86. PubMed ID: 18599415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The correlation between the SOS in trabecular bone and stiffness and density studied by finite-element analysis.
    Goossens L; Vanderoost J; Jaecques S; Boonen S; D'hooge J; Lauriks W; Van der Perre G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1234-42. PubMed ID: 18599411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element simulation of ultrasonic wave propagation in a dental implant for biomechanical stability assessment.
    Vayron R; Nguyen VH; Bosc R; Naili S; Haïat G
    Biomech Model Mechanobiol; 2015 Oct; 14(5):1021-32. PubMed ID: 25619479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a numerical cancellous bone model for finite-difference time-domain simulations of ultrasound propagation.
    Hosokawa A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1219-33. PubMed ID: 18599410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Singular value decomposition-based wave extraction in axial transmission: application to cortical bone ultrasonic characterization.
    Sasso M; Haïat G; Talmant M; Laugier P; Naili S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1328-32. PubMed ID: 18599420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasonic pulse waves in cancellous bone analyzed by finite-difference time-domain methods.
    Hosokawa A
    Ultrasonics; 2006 Dec; 44 Suppl 1():e227-31. PubMed ID: 16844171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Guided ultrasonic waves in long bones: modelling, experiment and in vivo application.
    Nicholson PH; Moilanen P; Kärkkäinen T; Timonen J; Cheng S
    Physiol Meas; 2002 Nov; 23(4):755-68. PubMed ID: 12450274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of the dispersion and attenuation of cylindrical ultrasonic guided waves in long bone.
    Ta D; Wang W; Wang Y; Le LH; Zhou Y
    Ultrasound Med Biol; 2009 Apr; 35(4):641-52. PubMed ID: 19153000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasonic monitoring of bone fracture healing.
    Protopappas VC; Vavva MG; Fotiadis DI; Malizos KN
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1243-55. PubMed ID: 18599412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and analysis of multimode guided waves in tibia cortical bone.
    Ta DA; Huang K; Wang WQ; Wang YY; Le LH
    Ultrasonics; 2006 Dec; 44 Suppl 1():e279-84. PubMed ID: 16846626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring mass density and ultrasonic wave velocity: A wavelet-based method applied in ultrasonic reflection mode.
    Metwally K; Lefevre E; Baron C; Zheng R; Pithioux M; Lasaygues P
    Ultrasonics; 2016 Feb; 65():10-7. PubMed ID: 26403278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of porosity, pore size, and cortical thickness on the propagation of ultrasonic waves guided through the femoral neck cortex: a simulation study.
    Rohde K; Rohrbach D; Glüer CC; Laugier P; Grimal Q; Raum K; Barkmann R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Feb; 61(2):302-13. PubMed ID: 24474136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A numerical study on the propagation of Rayleigh and guided waves in cortical bone according to Mindlin's Form II gradient elastic theory.
    Papacharalampopoulos A; Vavva MG; Protopappas VC; Fotiadis DI; Polyzos D
    J Acoust Soc Am; 2011 Aug; 130(2):1060-70. PubMed ID: 21877818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical simulation of wave propagation in cancellous bone.
    Padilla F; Bossy E; Haiat G; Jenson F; Laugier P
    Ultrasonics; 2006 Dec; 44 Suppl 1():e239-43. PubMed ID: 16859723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential of first arriving signal to assess cortical bone geometry at the Hip with QUS: a model based study.
    Grondin J; Grimal Q; Engelke K; Laugier P
    Ultrasound Med Biol; 2010 Apr; 36(4):656-66. PubMed ID: 20350690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical simulation of the dependence of quantitative ultrasonic parameters on trabecular bone microarchitecture and elastic constants.
    Haïat G; Padilla F; Barkmann R; Gluer CC; Laugier P
    Ultrasonics; 2006 Dec; 44 Suppl 1():e289-94. PubMed ID: 16859726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional finite element modeling of guided ultrasound wave propagation in intact and healing long bones.
    Protopappas VC; Kourtis IC; Kourtis LC; Malizos KN; Massalas CV; Fotiadis DI
    J Acoust Soc Am; 2007 Jun; 121(6):3907-21. PubMed ID: 17552737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity analysis of ultrasonic guided waves propagating in trilayered bone models: a numerical study.
    Tran TNHT; Le LH; Sacchi MD; Nguyen VH
    Biomech Model Mechanobiol; 2018 Oct; 17(5):1269-1279. PubMed ID: 29777322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid volume fraction estimation of bone:marrow replica models using ultrasound transit time spectroscopy.
    Wille ML; Langton CM
    Ultrasonics; 2016 Feb; 65():329-37. PubMed ID: 26455950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.