BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 18599495)

  • 1. Nucleus-encoded periplastid-targeted EFL in chlorarachniophytes.
    Gile GH; Keeling PJ
    Mol Biol Evol; 2008 Sep; 25(9):1967-77. PubMed ID: 18599495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of periplastidal compartment-targeting signals in chlorarachniophytes.
    Hirakawa Y; Gile GH; Ota S; Keeling PJ; Ishida K
    Mol Biol Evol; 2010 Jul; 27(7):1538-45. PubMed ID: 20133351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleus-to-nucleus gene transfer and protein retargeting into a remnant cytoplasm of cryptophytes and diatoms.
    Gould SB; Sommer MS; Kroth PG; Gile GH; Keeling PJ; Maier UG
    Mol Biol Evol; 2006 Dec; 23(12):2413-22. PubMed ID: 16971693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Der1-mediated preprotein import into the periplastid compartment of chromalveolates?
    Sommer MS; Gould SB; Lehmann P; Gruber A; Przyborski JM; Maier UG
    Mol Biol Evol; 2007 Apr; 24(4):918-28. PubMed ID: 17244602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleus- and nucleomorph-targeted histone proteins in a chlorarachniophyte alga.
    Hirakawa Y; Burki F; Keeling PJ
    Mol Microbiol; 2011 Jun; 80(6):1439-49. PubMed ID: 21470316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular chaperones encoded by a reduced nucleus: the cryptomonad nucleomorph.
    Archibald JM; Cavalier-Smith T; Maier U; Douglas S
    J Mol Evol; 2001 Jun; 52(6):490-501. PubMed ID: 11443352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomics reveals plastid- and periplastid-targeted proteins in the chlorarachniophyte alga Bigelowiella natans.
    Hopkins JF; Spencer DF; Laboissiere S; Neilson JA; Eveleigh RJ; Durnford DG; Gray MW; Archibald JM
    Genome Biol Evol; 2012; 4(12):1391-406. PubMed ID: 23221610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Going, going, not quite gone: nucleomorphs as a case study in nuclear genome reduction.
    Archibald JM; Lane CE
    J Hered; 2009; 100(5):582-90. PubMed ID: 19617523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of ultrasmall spliceosomal introns in highly reduced nuclear genomes.
    Slamovits CH; Keeling PJ
    Mol Biol Evol; 2009 Aug; 26(8):1699-705. PubMed ID: 19380463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of molecular chaperone genes in nucleomorph genomes.
    Hirakawa Y; Suzuki S; Archibald JM; Keeling PJ; Ishida K
    Mol Biol Evol; 2014 Jun; 31(6):1437-43. PubMed ID: 24603278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleomorph genomes: structure, function, origin and evolution.
    Archibald JM
    Bioessays; 2007 Apr; 29(4):392-402. PubMed ID: 17373660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complete nucleotide sequence of the chlorarachniophyte nucleomorph: nature's smallest nucleus.
    Gilson PR; Su V; Slamovits CH; Reith ME; Keeling PJ; McFadden GI
    Proc Natl Acad Sci U S A; 2006 Jun; 103(25):9566-71. PubMed ID: 16760254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative rates of evolution in endosymbiotic nuclear genomes.
    Patron NJ; Rogers MB; Keeling PJ
    BMC Evol Biol; 2006 Jun; 6():46. PubMed ID: 16772046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae).
    Cavalier-Smith T
    Philos Trans R Soc Lond B Biol Sci; 2003 Jan; 358(1429):109-33; discussion 133-4. PubMed ID: 12594921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromalveolates and the evolution of plastids by secondary endosymbiosis.
    Keeling PJ
    J Eukaryot Microbiol; 2009; 56(1):1-8. PubMed ID: 19335769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual targeting of aminoacyl-tRNA synthetases to the mitochondrion and complex plastid in chlorarachniophytes.
    Hirakawa Y; Burki F; Keeling PJ
    J Cell Sci; 2012 Dec; 125(Pt 24):6176-84. PubMed ID: 23038770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eukaryotic and eubacterial contributions to the establishment of plastid proteome estimated by large-scale phylogenetic analyses.
    Suzuki K; Miyagishima SY
    Mol Biol Evol; 2010 Mar; 27(3):581-90. PubMed ID: 19910386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary origin of a preprotein translocase in the periplastid membrane of complex plastids: a hypothesis.
    BodyƂ A
    Plant Biol (Stuttg); 2004 Sep; 6(5):513-8. PubMed ID: 15375721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages.
    Patron NJ; Inagaki Y; Keeling PJ
    Curr Biol; 2007 May; 17(10):887-91. PubMed ID: 17462896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EFL GTPase in cryptomonads and the distribution of EFL and EF-1alpha in chromalveolates.
    Gile GH; Patron NJ; Keeling PJ
    Protist; 2006 Oct; 157(4):435-44. PubMed ID: 16904374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.