These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 18600467)
1. Heavy metal concentrations of the soldier crab (Mictyris brevidactylus) along the inshore area of Changhua, Taiwan. Yeh HC; Chen IM; Chen P; Wang WH Environ Monit Assess; 2009 Jun; 153(1-4):103-9. PubMed ID: 18600467 [TBL] [Abstract][Full Text] [Related]
2. Heavy Metals in the Blue Crab (Callinectes sapidus) in Mersin Bay, Turkey. Çoğun HY; Firat Ö; Aytekin T; Firidin G; Firat Ö; Varkal H; Temiz Ö; Kargin F Bull Environ Contam Toxicol; 2017 Jun; 98(6):824-829. PubMed ID: 28409194 [TBL] [Abstract][Full Text] [Related]
3. Valorization of biosorbent obtained from a forestry waste: Competitive adsorption, desorption and transport of Cd, Cu, Ni, Pb and Zn. Cutillas-Barreiro L; Paradelo R; Igrexas-Soto A; Núñez-Delgado A; Fernández-Sanjurjo MJ; Álvarez-Rodriguez E; Garrote G; Nóvoa-Muñoz JC; Arias-Estévez M Ecotoxicol Environ Saf; 2016 Sep; 131():118-26. PubMed ID: 27232204 [TBL] [Abstract][Full Text] [Related]
4. Occurrence of heavy metals in sediment and their bioaccumulation in sentinel crab (Macrophthalmus depressus) from highly impacted coastal zone. Saher NU; Siddiqui AS Chemosphere; 2019 Apr; 221():89-98. PubMed ID: 30639816 [TBL] [Abstract][Full Text] [Related]
5. Burrowing crab (Neohelice granulata) as a potential bioindicator of heavy metals in the Bahía Blanca estuary, Argentina. Simonetti P; Botté SE; Fiori SM; Marcovecchio JE Arch Environ Contam Toxicol; 2013 Jan; 64(1):110-8. PubMed ID: 23124165 [TBL] [Abstract][Full Text] [Related]
6. [Spatial Variation of Heavy Metals in Soils and Its Ecological Risk Evaluation in a Typical Zhang HJ; Zhao KL; Ye ZQ; Xu B; Zhao WM; Gu XB; Zhang HF Huan Jing Ke Xue; 2018 Jun; 39(6):2893-2903. PubMed ID: 29965648 [TBL] [Abstract][Full Text] [Related]
7. Bioaccumulation of trace metals and speciation of copper and zinc in Pacific oysters (Crassostrea gigas) using XANES/EXAFS spectroscopies. Kunene SC; Lin KS; Mdlovu NV; Shih WC Chemosphere; 2021 Feb; 265():129067. PubMed ID: 33246704 [TBL] [Abstract][Full Text] [Related]
8. Phytoextraction of zinc, copper, nickel and lead from a contaminated soil by different species of Brassica. Purakayastha TJ; Viswanath T; Bhadraray S; Chhonkar PK; Adhikari PP; Suribabu K Int J Phytoremediation; 2008; 10(1):61-72. PubMed ID: 18709932 [TBL] [Abstract][Full Text] [Related]
9. Metal accumulation and differentially expressed proteins in gill of oyster (Crassostrea hongkongensis) exposed to long-term heavy metal-contaminated estuary. Luo L; Ke C; Guo X; Shi B; Huang M Fish Shellfish Immunol; 2014 Jun; 38(2):318-29. PubMed ID: 24698996 [TBL] [Abstract][Full Text] [Related]
10. Bioaccumulation of trace metal ions in the blue swimmer crab tissues Portunus pelagicus (Linnaeus, 1758) in Bahrain, Arabian Gulf. Khamis AS; Naser HA; Ali-Mohamed AY Environ Monit Assess; 2023 Aug; 195(9):1022. PubMed ID: 37548913 [TBL] [Abstract][Full Text] [Related]
11. A comparative study on metal contamination in Estero de Urias lagoon, Gulf of California, using oysters, mussels and artificial mussels: Implications on pollution monitoring and public health risk. Ruiz-Fernández AC; Wu RSS; Lau TC; Pérez-Bernal LH; Sánchez-Cabeza JA; Chiu JMY Environ Pollut; 2018 Dec; 243(Pt A):197-205. PubMed ID: 30172989 [TBL] [Abstract][Full Text] [Related]
12. Ability of Agrogyron elongatum to accumulate the single metal of cadmium, copper, nickel and lead and root exudation of organic acids. Yang H; Wong JW; Yang ZM; Zhou LX J Environ Sci (China); 2001 Jul; 13(3):368-75. PubMed ID: 11590773 [TBL] [Abstract][Full Text] [Related]
13. The role of the carapace in the accumulation of metals from seawater in the green crab (Carcinus maenas): Studies with radio-labeled calcium, zinc, and nickel. Nogueira LS; Crémazy A; Wood CM Sci Total Environ; 2024 Oct; 945():174008. PubMed ID: 38901594 [TBL] [Abstract][Full Text] [Related]
14. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils. Kuo S; Lai MS; Lin CW Environ Pollut; 2006 Dec; 144(3):918-25. PubMed ID: 16603295 [TBL] [Abstract][Full Text] [Related]
15. Accumulation of Cu, Pb, Ni and Zn in the halophyte plant Atriplex grown on polluted soil. Kachout SS; Mansoura AB; Mechergui R; Leclerc JC; Rejeb MN; Ouerghi Z J Sci Food Agric; 2012 Jan; 92(2):336-42. PubMed ID: 21935956 [TBL] [Abstract][Full Text] [Related]
16. Bioaccumulation of heavy metals in mullet (Mugil cephalus) and oyster (Crassostrea madrasensis) from Pulicat lake, south east coast of India. Laxmi Priya S; Senthilkumar B; Hariharan G; Paneer Selvam A; Purvaja R; Ramesh R Toxicol Ind Health; 2011 Mar; 27(2):117-26. PubMed ID: 20921056 [TBL] [Abstract][Full Text] [Related]
17. Oyster-based national mapping of trace metals pollution in the Chinese coastal waters. Lu GY; Ke CH; Zhu A; Wang WX Environ Pollut; 2017 May; 224():658-669. PubMed ID: 28262379 [TBL] [Abstract][Full Text] [Related]
18. Assessment of heavy metals in tilapia fish (Oreochromis niloticus) from the Langat River and Engineering Lake in Bangi, Malaysia, and evaluation of the health risk from tilapia consumption. Taweel A; Shuhaimi-Othman M; Ahmad AK Ecotoxicol Environ Saf; 2013 Jul; 93():45-51. PubMed ID: 23642778 [TBL] [Abstract][Full Text] [Related]
19. Trace element occurrence in the Pacific oyster Crassostrea gigas from coastal marine ecosystems in Italy. Burioli EAV; Squadrone S; Stella C; Foglini C; Abete MC; Prearo M Chemosphere; 2017 Nov; 187():248-260. PubMed ID: 28850909 [TBL] [Abstract][Full Text] [Related]
20. Metal concentrations in mussel Crenomytilus grayanus and oyster Crassostrea gigas in relation to contamination of ambient sediments. Shulkin VM; Presley BJ; Kavun VIa Environ Int; 2003 Jul; 29(4):493-502. PubMed ID: 12705947 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]