These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 18600559)

  • 1. The role for glutamic acid at position 196 in human hypoxanthine phosphoribosyltransferase (HPRT) as investigated using site-directed mutagenesis.
    Canyuk B; E-Wan A; Keawwijit W; Nualnoi T; Sirisatean L; Tansakul P; Tanthana C
    Nucleosides Nucleotides Nucleic Acids; 2008 Jun; 27(6):894-9. PubMed ID: 18600559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and functional studies of the human phosphoribosyltransferase domain containing protein 1.
    Welin M; Egeblad L; Johansson A; Stenmark P; Wang L; Flodin S; Nyman T; Trésaugues L; Kotenyova T; Johansson I; Eriksson S; Eklund H; Nordlund P
    FEBS J; 2010 Dec; 277(23):4920-30. PubMed ID: 21054786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altering the purine specificity of hypoxanthine-guanine-xanthine phosphoribosyltransferase from Tritrichomonas foetus by structure-based point mutations in the enzyme protein.
    Munagala NR; Wang CC
    Biochemistry; 1998 Nov; 37(47):16612-9. PubMed ID: 9843428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A single amino acid substitution in the human and a bacterial hypoxanthine phosphoribosyltransferase modulates specificity for the binding of guanine.
    Lee CC; Craig SP; Eakin AE
    Biochemistry; 1998 Mar; 37(10):3491-8. PubMed ID: 9521670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalysis in human hypoxanthine-guanine phosphoribosyltransferase: Asp 137 acts as a general acid/base.
    Xu Y; Grubmeyer C
    Biochemistry; 1998 Mar; 37(12):4114-24. PubMed ID: 9521733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role for an invariant aspartic acid in hypoxanthine phosphoribosyltransferases is examined using saturation mutagenesis, functional analysis, and X-ray crystallography.
    Canyuk B; Focia PJ; Eakin AE
    Biochemistry; 2001 Mar; 40(9):2754-65. PubMed ID: 11258886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steady-state kinetics of the hypoxanthine-guanine-xanthine phosphoribosyltransferase from Tritrichomonas foetus: the role of threonine-47.
    Munagala NR; Chin MS; Wang CC
    Biochemistry; 1998 Mar; 37(12):4045-51. PubMed ID: 9521725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The crystal structure of free human hypoxanthine-guanine phosphoribosyltransferase reveals extensive conformational plasticity throughout the catalytic cycle.
    Keough DT; Brereton IM; de Jersey J; Guddat LW
    J Mol Biol; 2005 Aug; 351(1):170-81. PubMed ID: 15990111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions at the dimer interface influence the relative efficiencies for purine nucleotide synthesis and pyrophosphorolysis in a phosphoribosyltransferase.
    Canyuk B; Medrano FJ; Wenck MA; Focia PJ; Eakin AE; Craig SP
    J Mol Biol; 2004 Jan; 335(4):905-21. PubMed ID: 14698288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acidic residues in the purine binding site govern the 6-oxopurine specificity of the Leishmania donovani xanthine phosphoribosyltransferase.
    Ullman B; Cyr N; Choi K; Jardim A
    Int J Biochem Cell Biol; 2010 Feb; 42(2):253-62. PubMed ID: 19861168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Saturation mutagenesis, complement selection, and steady-state kinetic studies illuminate the roles of invariant residues in active site loop I of the hypoxanthine phosphoribosyltransferase from Trypanosoma cruzi.
    Butterworth AC; Medrano FJ; Eakin AE; Craig SP
    Biochim Biophys Acta; 2004 Jun; 1699(1-2):87-94. PubMed ID: 15158715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic mechanism of human hypoxanthine-guanine phosphoribosyltransferase: rapid phosphoribosyl transfer chemistry.
    Xu Y; Eads J; Sacchettini JC; Grubmeyer C
    Biochemistry; 1997 Mar; 36(12):3700-12. PubMed ID: 9132023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unusual substrate specificity of a chimeric hypoxanthine-guanine phosphoribosyltransferase containing segments from the Plasmodium falciparum and human enzymes.
    Sujay Subbayya IN; Sukumaran S; Shivashankar K; Balaram H
    Biochem Biophys Res Commun; 2000 Jun; 272(2):596-602. PubMed ID: 10833458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [A Japanese family with Lesch-Nyhan syndrome resulting from a new point mutation in hypoxanthine-guanine phosphoribosyltransferase gene].
    Maruta K; Ohi T; Yamada Y; Goto H; Ogasawara N; Matsukura S
    No To Shinkei; 1997 Nov; 49(11):1009-13. PubMed ID: 9396032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 1.4 A crystal structure for the hypoxanthine phosphoribosyltransferase of Trypanosoma cruzi.
    Focia PJ; Craig SP; Nieves-Alicea R; Fletterick RJ; Eakin AE
    Biochemistry; 1998 Oct; 37(43):15066-75. PubMed ID: 9790669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Cloning, expression and characterization of the hypoxanthine-guanine phosphoribosyltransferase mutants from T. tengcongensis].
    You DL; Qu H; Chen Q; Xing Y; Gu XC; Luo M
    Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2003 Sep; 35(9):853-8. PubMed ID: 12958660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic states of substrates and transition state analogues at the catalytic sites of N-ribosyltransferases.
    Sauve AA; Cahill SM; Zech SG; Basso LA; Lewandowicz A; Santos DS; Grubmeyer C; Evans GB; Furneaux RH; Tyler PC; McDermott A; Girvin ME; Schramm VL
    Biochemistry; 2003 May; 42(19):5694-705. PubMed ID: 12741826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-directed mutagenesis of the active site glutamate in human matrilysin: investigation of its role in catalysis.
    Cha J; Auld DS
    Biochemistry; 1997 Dec; 36(50):16019-24. PubMed ID: 9398337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of human UDP-glucose dehydrogenase reveals critical catalytic roles for lysine 220 and aspartate 280.
    Easley KE; Sommer BJ; Boanca G; Barycki JJ; Simpson MA
    Biochemistry; 2007 Jan; 46(2):369-78. PubMed ID: 17209547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel de novo mutation in HPRT gene responsible for Lesch-Nyhan syndrome (HPRT OSAKA).
    Yamada Y; Goto H; Shiomi M; Yamamoto T; Higashino K; Ogasawara N
    Jpn J Hum Genet; 1996 Dec; 41(4):427-30. PubMed ID: 9088115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.