These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 18600596)

  • 1. Replacing SUs with incretin-based therapies for type 2 diabetes mellitus: challenges and feasibility.
    Knop FK; Holst JJ; Vilsbøll T
    IDrugs; 2008 Jul; 11(7):497-501. PubMed ID: 18600596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Therapeutic potentials of glucose-dependent insulinotropic polypeptide (GIP) in T2DM: Past, present, and future.
    Das S; Ravi H; Babu A; Banerjee M; Kanagavalli R; Dhanasekaran S; Devi Rajeswari V; Venkatraman G; Ramanathan G
    Adv Protein Chem Struct Biol; 2024; 142():293-328. PubMed ID: 39059989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incretin hormone responses to carbohydrate and protein/fat are preserved in adults with sulfonylurea-treated KCNJ11 neonatal diabetes.
    Bowman P; Patel KA; McDonald TJ; Holst JJ; Hartmann B; Leveridge M; Shields BM; Hammersley S; Spaull SR; Knight BA; Flanagan SE; Shepherd MH; Andrews RC; Hattersley AT
    J Diabetes Investig; 2023 Dec; 14(12):1378-1382. PubMed ID: 37602910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in peptide-based therapies for obesity and type 2 diabetes.
    Bailey CJ; Flatt PR; Conlon JM
    Peptides; 2024 Mar; 173():171149. PubMed ID: 38184193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipotoxicity disrupts incretin-regulated human β cell connectivity.
    Hodson DJ; Mitchell RK; Bellomo EA; Sun G; Vinet L; Meda P; Li D; Li WH; Bugliani M; Marchetti P; Bosco D; Piemonti L; Johnson P; Hughes SJ; Rutter GA
    J Clin Invest; 2013 Oct; 123(10):4182-94. PubMed ID: 24018562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of free fatty acids on insulin secretion, insulin sensitivity and incretin effect - a narrative review.
    Chueire VB; Muscelli E
    Arch Endocrinol Metab; 2021 Nov; 65(1):24-31. PubMed ID: 33320449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New Approaches to Feline Diabetes Mellitus: Glucagon-like peptide-1 analogs.
    Gilor C; Rudinsky AJ; Hall MJ
    J Feline Med Surg; 2016 Sep; 18(9):733-43. PubMed ID: 27562982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emerging therapeutic options in the management of diabetes: recent trends, challenges and future directions.
    Ansari MA; Chauhan W; Shoaib S; Alyahya SA; Ali M; Ashraf H; Alomary MN; Al-Suhaimi EA
    Int J Obes (Lond); 2023 Dec; 47(12):1179-1199. PubMed ID: 37696926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting the incretin system in obesity and type 2 diabetes mellitus.
    Ansari S; Khoo B; Tan T
    Nat Rev Endocrinol; 2024 Aug; 20(8):447-459. PubMed ID: 38632474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From the Incretin Concept and the Discovery of GLP-1 to Today's Diabetes Therapy.
    Holst JJ
    Front Endocrinol (Lausanne); 2019; 10():260. PubMed ID: 31080438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drug-induced diabetes type 2: In silico study involving class B GPCRs.
    Latek D; Rutkowska E; Niewieczerzal S; Cielecka-Piontek J
    PLoS One; 2019; 14(1):e0208892. PubMed ID: 30650080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel Approaches for the Management of Type 2 Diabetes Mellitus: An Update.
    Kumar A; Mazumder R; Rani A; Pandey P; Khurana N
    Curr Diabetes Rev; 2024; 20(4):e051023221768. PubMed ID: 37888820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Insight on GPR119 Agonist as Potential Therapy for Type II Diabetes: A Comprehensive Review.
    Nema P; Asati V; Kendya P; Gupta T; Agarwal S; Kori S; Kashaw V; Iyer AK; Kashaw SK
    Mini Rev Med Chem; 2023; 23(21):2008-2040. PubMed ID: 36861804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucagon as the First Incretin: Objects (in the Rearview Mirror) Are Closer Than They Appear.
    D'Alessio DA; Marks V
    Diabetes; 2023 Dec; 72(12):1739-1740. PubMed ID: 37983526
    [No Abstract]   [Full Text] [Related]  

  • 15. Cyb5r3 activation rescues secondary failure to sulfonylurea but not β-cell dedifferentiation.
    Watanabe H; Asahara SI; Son J; McKimpson WM; de Cabo R; Accili D
    PLoS One; 2024; 19(2):e0297555. PubMed ID: 38335173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Whole Alga, Algal Extracts, and Compounds as Ingredients of Functional Foods: Composition and Action Mechanism Relationships in the Prevention and Treatment of Type-2 Diabetes Mellitus.
    Bocanegra A; Macho-González A; Garcimartín A; Benedí J; Sánchez-Muniz FJ
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33917044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Type 2 diabetes mellitus: pathogenesis and genetic diagnosis.
    Himanshu D; Ali W; Wamique M
    J Diabetes Metab Disord; 2020 Dec; 19(2):1959-1966. PubMed ID: 33520871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytobioactive compound-based nanodelivery systems for the treatment of type 2 diabetes mellitus - current status.
    Ganesan P; Arulselvan P; Choi DK
    Int J Nanomedicine; 2017; 12():1097-1111. PubMed ID: 28223801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Recent Achievement In the Discovery and Development of Novel Targets for the Treatment of Type-2 Diabetes Mellitus.
    Belete TM
    J Exp Pharmacol; 2020; 12():1-15. PubMed ID: 32021494
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 15.