These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 18600643)
1. Methanol biosynthesis by covalently immobilized cells of Methylosinus trichosporium: batch and continuous studies. Mehta PK; Ghose TK; Mishra S Biotechnol Bioeng; 1991 Mar; 37(6):551-6. PubMed ID: 18600643 [TBL] [Abstract][Full Text] [Related]
2. High-rate conversion of methane to methanol by Methylosinus trichosporium OB3b. Duan C; Luo M; Xing X Bioresour Technol; 2011 Aug; 102(15):7349-53. PubMed ID: 21612919 [TBL] [Abstract][Full Text] [Related]
3. Batch conversion of methane to methanol using Methylosinus trichosporium OB3b as biocatalyst. Hwang IY; Hur DH; Lee JH; Park CH; Chang IS; Lee JW; Lee EY J Microbiol Biotechnol; 2015 Mar; 25(3):375-80. PubMed ID: 25563419 [TBL] [Abstract][Full Text] [Related]
4. Optimization of methanol biosynthesis from methane using Methylosinus trichosporium OB3b. Lee SG; Goo JH; Kim HG; Oh JI; Kim YM; Kim SW Biotechnol Lett; 2004 Jun; 26(11):947-50. PubMed ID: 15269546 [TBL] [Abstract][Full Text] [Related]
5. Cultivation of Methylosinus trichosporium OB3b: III. production of particulate methane monooxygenase in continuous culture. Shah NN; Park S; Taylor RT; Droege MW Biotechnol Bioeng; 1992 Sep; 40(6):705-12. PubMed ID: 18601170 [TBL] [Abstract][Full Text] [Related]
6. Production of soluble methane monooxygenase during growth of Methylosinus trichosporium on methanol. Yu Y; Ramsay JA; Ramsay BA J Biotechnol; 2009 Jan; 139(1):78-83. PubMed ID: 18955091 [TBL] [Abstract][Full Text] [Related]
7. Batch cultivation of Methylosinus trichosporium OB3b. I: Production of soluble methane monooxygenase. Park S; Hanna L; Taylor RT; Droege MW Biotechnol Bioeng; 1991 Aug; 38(4):423-33. PubMed ID: 18600778 [TBL] [Abstract][Full Text] [Related]
8. Development and mathematical modeling of a two-stage reactor system for trichloroethylene degradation using Methylosinus trichosporium OB3b. Hwang JW; Choi YB; Park S; Choi CY; Lee EY Biodegradation; 2007 Feb; 18(1):91-101. PubMed ID: 16467965 [TBL] [Abstract][Full Text] [Related]
9. [Continuous biosynthesis of epoxypropane in a methanotrophic attached-films reactor]. Xin JY; Cui JR; Chen JB; Li SB; Xia CG Sheng Wu Gong Cheng Xue Bao; 2002 Jan; 18(1):89-93. PubMed ID: 11977608 [TBL] [Abstract][Full Text] [Related]
10. Comparative enzyme inhibitive methanol production by Methylosinus sporium from simulated biogas. Yoo YS; Han JS; Ahn CM; Kim CG Environ Technol; 2015; 36(5-8):983-91. PubMed ID: 25267420 [TBL] [Abstract][Full Text] [Related]
11. Tc(VII) reduction and accumulation by immobilized cells of Escherichia coli. Lloyd JR; Harding CL; Macaskie LE Biotechnol Bioeng; 1997 Aug; 55(3):505-10. PubMed ID: 18636516 [TBL] [Abstract][Full Text] [Related]
12. Immobilization of Methylosinus trichosporium OB3b for methanol production. Taylor A; Molzahn P; Bushnell T; Cheney C; LaJeunesse M; Azizian M; Semprini L J Ind Microbiol Biotechnol; 2018 Mar; 45(3):201-211. PubMed ID: 29350313 [TBL] [Abstract][Full Text] [Related]
13. Numerical modeling and uncertainties in rate coefficients for methane utilization and TCE cometabolism by a methane-oxidizing mixed culture. Smith LH; Kitanidis PK; McCarty PL Biotechnol Bioeng; 1997 Feb; 53(3):320-31. PubMed ID: 18633987 [TBL] [Abstract][Full Text] [Related]
14. The effect of oxygen on methanol oxidation by an obligate methanotrophic bacterium studied by in vivo 13C nuclear magnetic resonance spectroscopy. Costa C; Vecherskaya M; Dijkema C; Stams AJ J Ind Microbiol Biotechnol; 2001; 26(1-2):9-14. PubMed ID: 11548754 [TBL] [Abstract][Full Text] [Related]
15. Use of allylthiourea to produce soluble methane monooxygenase in the presence of copper. Yu Y; Ramsay JA; Ramsay BA Appl Microbiol Biotechnol; 2009 Feb; 82(2):333-9. PubMed ID: 19107472 [TBL] [Abstract][Full Text] [Related]
16. [Growth of Methylosinus trichosporium OB3b on methane and poly-beta-hydroxybutyrate biosynthesis]. Doronina NV; Ezhov VA; Trotsenko IuA Prikl Biokhim Mikrobiol; 2008; 44(2):202-6. PubMed ID: 18669263 [TBL] [Abstract][Full Text] [Related]
17. Modification of allergenicity and immunogenicity of formate dehydrogenase by conjugation with linear mono methoxy poly ethylene glycol: improvement in detoxification of formate in methanol poisoning. Muthuvel A; Rajamani R; Senthilvelan M; Manikandan S; Sheeladevi R Clin Chim Acta; 2006 Dec; 374(1-2):122-8. PubMed ID: 16919615 [TBL] [Abstract][Full Text] [Related]
18. Methanol promotes atmospheric methane oxidation by methanotrophic cultures and soils. Benstead J; King GM; Williams HG Appl Environ Microbiol; 1998 Mar; 64(3):1091-8. PubMed ID: 16349514 [TBL] [Abstract][Full Text] [Related]
19. Methane biohydroxylation into methanol by Baldo H; Ruiz-Valencia A; Cornette de Saint Cyr L; Ramadier G; Petit E; Belleville MP; Sanchez-Marcano J; Soussan L Front Bioeng Biotechnol; 2024; 12():1422580. PubMed ID: 39253703 [TBL] [Abstract][Full Text] [Related]
20. Functional expression of the particulate methane mono-oxygenase gene in recombinant Rhodococcus erythropolis. Gou Z; Xing XH; Luo M; Jiang H; Han B; Wu H; Wang L; Zhang F FEMS Microbiol Lett; 2006 Oct; 263(2):136-41. PubMed ID: 16978347 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]